Volume and Hilbert Function of \mathbb{R} -Divisors

MIHAI FULGER, JÁNOS KOLLÁR, & BRIAN LEHMANN

1. Introduction

Let X be a proper, normal algebraic variety of dimension n over a field K, and D an \mathbb{R} -divisor on X. The *Hilbert function* of D is the function

$$\mathcal{H}(X, D) : m \mapsto h^0(mD) := \dim_K H^0(X, \mathcal{O}_X(\lfloor mD \rfloor))$$

defined for all $m \in \mathbb{R}$. If D is an ample Cartier divisor, then $\mathcal{H}(X,D)$ agrees with the usual Hilbert polynomial whenever $m \gg 1$ is an integer, but in general $\mathcal{H}(X,D)$ is not a polynomial, not even if D is a \mathbb{Z} -divisor and $m \in \mathbb{Z}$. The simplest numerical invariant associated to the Hilbert function is the *volume* of D, defined as

$$\operatorname{vol}(D) := \limsup_{m \to \infty} \frac{h^0(mD)}{m^n/n!}.$$

If E is an effective \mathbb{R} -divisor, then

$$h^{0}(mD - mE) \le h^{0}(mD) \le h^{0}(mD + mE)$$
 (*)

for every m > 0; hence,

$$vol(D - E) \le vol(D) \le vol(D + E). \tag{**}$$

Furthermore, if equality holds in (*) for every $m \gg 1$, then equality holds in (**). The aim of this note is to prove the converse for big divisors, that is, when vol(D) > 0. Although the volume does not determine the Hilbert function, we prove that

$$\mathcal{H}(X, D) \equiv \mathcal{H}(X, D - E) \quad \Leftrightarrow \quad \text{vol}(D) = \text{vol}(D - E) \quad \text{and}$$

 $\mathcal{H}(X, D) \equiv \mathcal{H}(X, D + E) \quad \Leftrightarrow \quad \text{vol}(D) = \text{vol}(D + E).$

As a byproduct of the proof, we also obtain a characterization of such divisors E in terms of the negative part $N_{\sigma}(D)$ of the Zariski-Nakayama-decomposition (also called σ -decomposition) and of the divisorial part of the augmented base $locus \mathbf{B}^{\mathrm{div}}_{+}(D)$; see [Nak04], (4.1) and Definition 5.1 for definitions.

Another interesting consequence is that the answer depends only on the \mathbb{R} -linear equivalence class of D. This is obvious for \mathbb{Z} -linear equivalence, but it can easily happen that $D' \sim_{\mathbb{R}} D$ yet $h^0(X, mD) \neq h^0(X, mD')$ for every m > 0; see Example 2.6. In fact, the only relationship between $\mathcal{H}(X, D)$ and $\mathcal{H}(X, D')$ that we know of is vol(D) = vol(D').

Our main results are the following.

Received April 7, 2015. Revision received August 31, 2015.