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A Characterization of Singular-Hyperbolicity
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1. Introduction

The relationship between dominated splittings and uniform hyperbolicity was ex-
plored by Mañé in his solution of the stability conjecture for diffeomorphisms
[18]. Pujals and Sambarino [22] studied it in their nowadays famous Theorem B:
For C2 surface diffeomorphisms, every compact invariant set with a dominated
splitting whose periodic points are all hyperbolic saddle splits into a hyperbolic
set and finitely many disjoint normally hyperbolic irrational circles. A similar
relationship but between dominated splitting with respect to the linear Poincaré
flow and uniform hyperbolicity was obtained by Aubin and Hertz [6]. Indeed, they
proved that every nonsingular compact invariant set exhibiting a dominated split-
ting with respect to the Poincaré flow and whose periodic points are all hyperbolic
saddle splits in a hyperbolic set and finitely many disjoint normally hyperbolic
irrational tori. In light of these results, it is natural to think about the singular
case, namely, is it possible to obtain a similar decomposition for compact invari-
ant sets with singularities whose nonsingular points exhibit a dominated splitting
with respect to the linear Poincaré flow and whose periodic points are all hyper-
bolic of saddle type? However, this kind of question must face the problem of
a natural candidate for uniform hyperbolicity. Indeed, the geometric Lorenz at-
tractor [14] is a nonhyperbolic compact invariant set of a C∞ three-dimensional
flow for which the periodic points are all hyperbolic saddle, has no irrational tori,
and, nevertheless, its nonsingular points exhibit a dominated splitting with respect
to the linear Poincaré flow. The notion of singular-hyperbolicity emerges as this
candidate, the geometric Lorenz attractor as well as any robustly transitive attrac-
tor with singularities of a three-dimensional flow enjoy it [20]. It is then natural
to ask if there is a relationship between dominated splittings with respect to the
linear Poincaré flow and singular-hyperbolicity, namely, if for every C2 three-
dimensional flow, every compact invariant set whose nonsingular points exhibit a
dominated splitting with respect to the linear Poincaré flow and whose periodic
points are all hyperbolic saddle splits into a singular-hyperbolic set for the flow, a
singular-hyperbolic set for the reversed flow, and finitely many disjoint normally
hyperbolic irrational tori. In this scenario, Crovisier and Yang announced recently
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