The Affine Automorphism Group of \mathbb{A}^3 is Not a Maximal Subgroup of the Tame Automorphism Group

ERIC EDO & DREW LEWIS

ABSTRACT. We construct explicitly a family of proper subgroups of the tame automorphism group of affine three-space (in any characteristic) that are generated by the affine subgroup and a nonaffine tame automorphism. One important corollary is the titular result that settles negatively the open question (in characteristic zero) of whether the affine subgroup is a maximal subgroup of the tame automorphism group. We also prove that all groups of this family have the structure of an amalgamated free product of the affine group and a finite group over their intersection.

1. Introduction

Throughout, \mathbb{K} denotes a field of any characteristic. We denote by $GA_n(\mathbb{K})$ the group of polynomial automorphisms of $\mathbb{A}^n_{\mathbb{K}}$. We consider $Aff_n(\mathbb{K})$ (resp. $BA_n(\mathbb{K})$, resp. $TA_n(\mathbb{K})$), the subgroup of $GA_n(\mathbb{K})$ of affine (resp. triangular, resp. tame) automorphisms (see Section 2 or [4] for precise definitions). In this paper we are interested with the question of finding proper intermediate subgroups between $Aff_n(\mathbb{K})$ and $TA_n(\mathbb{K})$.

If n = 2, then it is well known that such intermediate subgroups exist. The classical Jung–van der Kulk theorem [5; 6] states that $GA_2(\mathbb{K}) = TA_2(\mathbb{K})$ and, moreover, $GA_2(\mathbb{K})$ is the amalgamated free product of $Aff_2(\mathbb{K})$ and $BA_2(\mathbb{K})$ along their intersection. Using this structure theorem, we can uniquely define the height of any automorphism $\phi \in GA_2(\mathbb{K})$ as the maximum of the degrees of the triangular automorphisms in any reduced decomposition of ϕ . Let H_d denote the set of all automorphisms of height at most d. Then we have that $Aff_2(\mathbb{K}) = H_1 \subset H_2 \subset H_3 \subset \cdots \subset TA_2(\mathbb{K})$ is an ascending sequence of (proper) subgroups of $TA_2(\mathbb{K})$. In particular, for all $\beta \in BA_2(\mathbb{K}) \setminus Aff_2(\mathbb{K})$, $\langle Aff_2(\mathbb{K}), \beta \rangle$ is a proper subgroup of $TA_2(\mathbb{K})$.

In the case that n > 2 and \mathbb{K} has positive characteristic, it is also known that there are many intermediate subgroups between $Aff_n(\mathbb{K})$ and $TA_n(\mathbb{K})$ (see, e.g., [3]). However, in characteristic zero, the question is much more nuanced.¹ The first partial results in this direction concern subgroups of the form $\langle Aff_n(\mathbb{K}), \beta \rangle$

Received October 23, 2014. Revision received April 13, 2015.

¹Recently, Wright [8] showed that in characteristic zero, TA₃(K) is an amalgamated free product of three subgroups along their pairwise intersection, which implies a much weaker structure on TA₃(K). Unlike in dimension two, we no longer have a reasonably unique representation of every tame automorphism.