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The Affine Automorphism Group of A3 is Not a Maximal
Subgroup of the Tame Automorphism Group

Eric Edo & Drew Lewis

Abstract. We construct explicitly a family of proper subgroups of
the tame automorphism group of affine three-space (in any character-
istic) that are generated by the affine subgroup and a nonaffine tame
automorphism. One important corollary is the titular result that set-
tles negatively the open question (in characteristic zero) of whether
the affine subgroup is a maximal subgroup of the tame automorphism
group. We also prove that all groups of this family have the structure
of an amalgamated free product of the affine group and a finite group
over their intersection.

1. Introduction

Throughout, K denotes a field of any characteristic. We denote by GAn(K) the
group of polynomial automorphisms of An

K
. We consider Affn(K) (resp. BAn(K),

resp. TAn(K)), the subgroup of GAn(K) of affine (resp. triangular, resp. tame)
automorphisms (see Section 2 or [4] for precise definitions). In this paper we are
interested with the question of finding proper intermediate subgroups between
Affn(K) and TAn(K).

If n = 2, then it is well known that such intermediate subgroups exist. The
classical Jung–van der Kulk theorem [5; 6] states that GA2(K) = TA2(K) and,
moreover, GA2(K) is the amalgamated free product of Aff2(K) and BA2(K)

along their intersection. Using this structure theorem, we can uniquely define
the height of any automorphism φ ∈ GA2(K) as the maximum of the degrees
of the triangular automorphisms in any reduced decomposition of φ. Let Hd

denote the set of all automorphisms of height at most d . Then we have that
Aff2(K) = H1 ⊂ H2 ⊂ H3 ⊂ · · · ⊂ TA2(K) is an ascending sequence of (proper)
subgroups of TA2(K). In particular, for all β ∈ BA2(K) \ Aff2(K), 〈Aff2(K), β〉
is a proper subgroup of TA2(K).

In the case that n > 2 and K has positive characteristic, it is also known that
there are many intermediate subgroups between Affn(K) and TAn(K) (see, e.g.,
[3]). However, in characteristic zero, the question is much more nuanced.1 The
first partial results in this direction concern subgroups of the form 〈Affn(K), β〉
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1Recently, Wright [8] showed that in characteristic zero, TA3(K) is an amalgamated free product

of three subgroups along their pairwise intersection, which implies a much weaker structure on
TA3(K). Unlike in dimension two, we no longer have a reasonably unique representation of every
tame automorphism.
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