Higher Derivatives of Length Functions along Earthquake Deformations

MARTIN BRIDGEMAN

1. Introduction

Let *S* be a closed surface of genus $g \ge 2$, and T(S) the associated Teichmüller space of hyperbolic structures on *S*. Given $\gamma \in \pi_1(S)$, let $L_{\gamma} : T(S) \to \mathbb{R}$ be the associated length function, and $T_{\gamma} : T(S) \to \mathbb{R}$ the associated trace function. The functions L_{γ} , T_{γ} have a simple relation given by

$$T_{\gamma} = 2\cosh(L_{\gamma}/2). \tag{1}$$

Let β be the homotopy class of a simple multicurve (i.e., a union of disjoint simple nontrivial closed curves in *S*), and t_{β} the vector field on *T*(*S*) associated with left twist along the geodesic representative of β (see [4]). In this paper, we describe a formula to calculate the higher-order derivatives of the functions L_{γ} , T_{γ} along t_{β} . In particular, we will find a formula for

$$t_{\beta}^{\kappa}L_{\gamma}=t_{\beta}t_{\beta}\ldots t_{\beta}L_{\gamma}.$$

The formulae we derive generalize formulae for the first two derivatives derived by Kerchoff [4] (first derivative) and Wolpert [5; 6] (first and second derivatives).

Kerckhoff and Wolpert both showed that the first derivative is given by

$$t_{\beta}L_{\gamma} = \sum_{p \in \beta' \cap \gamma'} \cos \theta_p, \qquad (2)$$

where β', γ' are the geodesic representatives of β, γ , respectively, and θ_p is the angle of intersection at $p \in \beta' \cap \gamma'$. Kerckhoff [4] further generalized the formula for the case where β, γ are measured laminations.

Wolpert [6] derived the following formula for the second derivative:

$$t_{\alpha}t_{\beta}L_{\gamma} = \sum_{(p,q)\in\beta'\cap\gamma'\times\alpha'\cap\gamma'} \frac{e^{t_{pq}} + e^{t_{qp}}}{2(e^{L_{\gamma}} - 1)}\sin\theta_{p}\sin\theta_{q} + \sum_{(r,s)\in\beta'\cap\gamma'\times\beta'\cap\alpha'} \frac{e^{m_{rs}} + e^{m_{sr}}}{2(e^{L_{\beta}} - 1)}\sin\theta_{r}\sin\theta_{s},$$

Received July 31, 2014. Revision received November 20, 2014.

This work was partially supported by grant #266344 from the Simons Foundation. The author acknowledges support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 "RNMS: GEometric structures And Representation varieties" (the GEAR Network).