Higher Derivatives of Length Functions along Earthquake Deformations

Martin Bridgeman

1. Introduction

Let S be a closed surface of genus $g \geq 2$, and $T(S)$ the associated Teichmüller space of hyperbolic structures on S. Given $\gamma \in \pi_{1}(S)$, let $L_{\gamma}: T(S) \rightarrow \mathbb{R}$ be the associated length function, and $T_{\gamma}: T(S) \rightarrow \mathbb{R}$ the associated trace function. The functions L_{γ}, T_{γ} have a simple relation given by

$$
\begin{equation*}
T_{\gamma}=2 \cosh \left(L_{\gamma} / 2\right) \tag{1}
\end{equation*}
$$

Let β be the homotopy class of a simple multicurve (i.e., a union of disjoint simple nontrivial closed curves in S), and t_{β} the vector field on $T(S)$ associated with left twist along the geodesic representative of β (see [4]). In this paper, we describe a formula to calculate the higher-order derivatives of the functions L_{γ}, T_{γ} along t_{β}. In particular, we will find a formula for

$$
t_{\beta}^{k} L_{\gamma}=t_{\beta} t_{\beta} \ldots t_{\beta} L_{\gamma}
$$

The formulae we derive generalize formulae for the first two derivatives derived by Kerchoff [4] (first derivative) and Wolpert [5; 6] (first and second derivatives).

Kerckhoff and Wolpert both showed that the first derivative is given by

$$
\begin{equation*}
t_{\beta} L_{\gamma}=\sum_{p \in \beta^{\prime} \cap \gamma^{\prime}} \cos \theta_{p} \tag{2}
\end{equation*}
$$

where $\beta^{\prime}, \gamma^{\prime}$ are the geodesic representatives of β, γ, respectively, and θ_{p} is the angle of intersection at $p \in \beta^{\prime} \cap \gamma^{\prime}$. Kerckhoff [4] further generalized the formula for the case where β, γ are measured laminations.

Wolpert [6] derived the following formula for the second derivative:

$$
\begin{aligned}
t_{\alpha} t_{\beta} L_{\gamma}= & \sum_{(p, q) \in \beta^{\prime} \cap \gamma^{\prime} \times \alpha^{\prime} \cap \gamma^{\prime}} \frac{e^{l_{p q}}+e^{l_{q p}}}{2\left(e^{L_{\gamma}}-1\right)} \sin \theta_{p} \sin \theta_{q} \\
& +\sum_{(r, s) \in \beta^{\prime} \cap \gamma^{\prime} \times \beta^{\prime} \cap \alpha^{\prime}} \frac{e^{m_{r s}}+e^{m_{s r}}}{2\left(e^{L_{\beta}}-1\right)} \sin \theta_{r} \sin \theta_{s}
\end{aligned}
$$

[^0]
[^0]: Received July 31, 2014. Revision received November 20, 2014.
 This work was partially supported by grant \#266344 from the Simons Foundation. The author acknowledges support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 "RNMS: GEometric structures And Representation varieties" (the GEAR Network).

