On Stable Conjugacy of Finite Subgroups of the Plane Cremona Group, II

YURI PROKHOROV

ABSTRACT. We prove that, except for a few cases, stable linearizability of finite subgroups of the plane Cremona group implies linearizability.

1. Introduction

This is a follow-up paper to [BP13]. Let \mathbb{k} be an algebraically closed field of characteristic 0. Recall that the *Cremona group* $\operatorname{Cr}_n(\mathbb{k})$ is the group of birational automorphisms $\operatorname{Bir}(\mathbb{P}^n)$ of the projective space \mathbb{P}^n over \mathbb{k} . Subgroups $G \subset \operatorname{Cr}_n(\mathbb{k})$ and $G' \subset \operatorname{Cr}_m(\mathbb{k})$ are said to be *stably conjugate* if, for some $N \geq n, m$, they are conjugate in $\operatorname{Cr}_N(\mathbb{k})$, where the embeddings $\operatorname{Cr}_n(\mathbb{k})$, $\operatorname{Cr}_m(\mathbb{k}) \subset \operatorname{Cr}_N(\mathbb{k})$ are induced by birational isomorphisms $\mathbb{P}^N \dashrightarrow \mathbb{P}^{N-n} \dashrightarrow \mathbb{P}^m \times \mathbb{P}^{N-m} \longrightarrow \mathbb{P}^m \times \mathbb{P}^{N-m}$.

Any embedding of a finite subgroup $G \subset \operatorname{Cr}_n(\mathbb{k})$ is induced by a biregular action on a rational variety X. A subgroup $G \subset \operatorname{Cr}_n(\mathbb{k})$ is said to be *linearizable* if one can take $X = \mathbb{P}^n$. A subgroup $G \subset \operatorname{Cr}_n(\mathbb{k})$ is said to be *stably linearizable* if it is stably conjugate to a linear action of G on a vector space \mathbb{k}^m .

The following question is a natural extension of the famous Zariski cancellation problem [BCSD85] to the geometric situation.

QUESTION 1.1. Let $G \subset \operatorname{Cr}_2(\mathbb{k})$ be a stably linearizable finite subgroup. Is it true that G is linearizable?

In this paper, we give a partial answer by finding a (very restrictive) list of all subgroups $G \subset \operatorname{Cr}_2(\Bbbk)$ that potentially can give counterexamples to the question.

It is easy to show (see [BP13]) that the group $H^1(G, \operatorname{Pic}(X))$ is a stable birational invariant. In particular, if $G \subset \operatorname{Cr}_n(\Bbbk)$ is stably linearizable, then $H^1(G_1,\operatorname{Pic}(X))=0$ for any subgroup $G_1 \subset G$ (then we say that $G \subset \operatorname{Cr}_n(\Bbbk)$ is H^1 -trivial). Any finite subgroup $G \subset \operatorname{Cr}_2(\Bbbk)$ is induced by an action on either a del Pezzo surface or a conic bundle [Isk80]. In the first case, our main result is the following theorem, which is based on a computation of $H^1(G,\operatorname{Pic}(X))$ in [BP13] (see Theorem 2.9).

THEOREM 1.2. Let X be a del Pezzo surface, and let $G \subset \operatorname{Aut}(X)$ be a finite subgroup such that the pair (X, G) is minimal. Then the following are equivalent:

- (i) $H^1(G_1, \operatorname{Pic}(X)) = 0$ for any subgroup $G_1 \subset G$,
- (ii) any element of G does not fix a curve of positive genus,

Received April 7, 2014. Revision received December 8, 2014. Partially supported by RScF grant no. 14-21-00053.