The Trace Map of Frobenius and Extending Sections for Threefolds

HIROMU TANAKA

ABSTRACT. In this paper, by using the trace map of Frobenius, we consider problems on extending sections for positive characteristic threefolds.

0. Introduction

In characteristic zero, by the Kodaira vanishing theorem and its generalizations, we can establish some results on adjoint divisors, such as the Kawamata– Shokurov basepoint-free theorem (see, e.g., [Kollár–Mori, Theorem 3.3]) and the Hacon–McKernan extension theorem [HM, Theorem 5.4.21]. These theorems claim, under suitable conditions, that an adjoint divisor $m(K_X + \Delta + A)$ has good properties, where $m \in \mathbb{Z}_{>0}$, (X, Δ) is a pair, and A is an ample divisor. In this paper we only consider the following very simple situation: X is a smooth projective variety, $\Delta = S$ is a smooth prime divisor, and A is an ample Cartier divisor. The following fact immediately follows from the Kodaira vanishing theorem.

FACT 0.1. Let k be an algebraically closed field of characteristic zero. Let X be a smooth projective variety over k. Let S be a smooth prime divisor on X, and let A be an ample Cartier divisor on X such that $K_X + S + A$ is nef. Fix $m \in \mathbb{Z}_{>0}$. Then, by the Kodaira vanishing theorem, we obtain

$$H^{1}(X, K_{X} + A + (m-1)(K_{X} + S + A)) = 0.$$

Thus, the natural restriction map

$$H^0(X, m(K_X + S + A)) \rightarrow H^0(S, m(K_S + A|_S))$$

is surjective.

It is natural to consider whether this fact also holds in positive characteristic. Unfortunately, however, there exists the following example.

EXAMPLE 0.2 (cf. Example 4.4). Let *k* be an algebraically closed field of positive characteristic. Then, there exist a smooth projective surface *X* over *k*, a smooth prime divisor *C* on *X*, and an ample Cartier divisor *A* on *X* such that $K_X + C + A$ is nef and the natural restriction map

$$H^0(X, K_X + C + A) \rightarrow H^0(C, K_C + A|_C)$$

is not surjective.

Received February 14, 2013. Revision received February 4, 2015.