On Undulation Invariants of Plane Curves

A. Popolitov \& Sh. Shakirov

Abstract

A classical problem introduced by A. Cayley and G. Salmon in 1852 is to determine if a given plane curve of degree $r>3$ has undulation points, the points where the tangent line meets the curve with multiplicity four. They proved that there exists an invariant of degree $6(r-3)(3 r-2)$ that vanishes if and only if the curve has undulation points. In this paper we give explicit formulas for this invariant in the case of quartics $(r=4)$ and quintics $(r=5)$, expressing it as the determinant of a matrix with polynomial entries, of sizes 21×21 and 36×36, respectively.

1. Introduction

This paper is devoted to a problem in classical invariant theory of plane curves, due to A. Cayley and G. Salmon (see [1], p. 362). Consider, on the projective plane $\mathbb{C P}^{2}$ with homogeneous coordinates $x_{1}: x_{2}: x_{3}$, a plane curve

$$
P\left(x_{1}, x_{2}, x_{3}\right)=\sum_{i+j+k=r} C_{i j k} x_{1}^{i} x_{2}^{j} x_{3}^{k}=0
$$

where P is a homogeneous irreducible degree r polynomial. By the Bezout theorem, any line in $\mathbb{C P}^{2}$ crosses this curve in exactly r points, if counted with multiplicities. The types of possible intersections thus can be put into correspondence with partitions $r=m_{1}+m_{2}+\cdots$, where the parts m_{i} of the partition are the multiplicities of intersection points. An illustration of this for the case of quartics is given on Figure 1.

If a line is generic, then it intersects the curve in r distinct points with all multiplicities 1 , that is, it corresponds to the partition $(1,1, \ldots, 1)$. The simplest nongeneric intersection occurs for the tangent line to a curve: then one of the intersection points has multiplicity 2 (the point of tangency), whereas all the other intersection points have multiplicity 1 . This type of intersection corresponds to the partition $(2,1,1, \ldots)$. The next-to-simplest types of intersection are, respectively, $(3,1, \ldots, 1)$ and $(2,2,1, \ldots, 1)$; the former situation is called a line of inflection, whereas the latter is called a bitangent since in this case the line is simultaneously tangent to a curve in two distinct points. One can continue further by considering lines of type $(4,1, \ldots, 1),(3,2,1, \ldots, 1)$, and so on. These generally do not have given names, with one notable exception: a line of type $(4,1, \ldots, 1)$ is called a line of undulation, and the corresponding point of intersection is called an undulation

[^0]
[^0]: Received February 10, 2014. Revision received July 31, 2014.

