Cycles of Polynomial Mappings in Several Variables over Discrete Valuation Rings and over Z

T. Pezda

Abstract

We find all possible cycle lengths of polynomial mappings in several variables over unramified discrete valuation domains. As a consequence, we determine the sets of all cycle lengths in R^{N} (where $N \geq 2$) for some Dedekind rings R. Finding these sets for $R=Z$ and any N is the main purpose of this paper.

1. Introduction

For a commutative ring R with unity and $\Phi=\left(\Phi_{1}, \ldots, \Phi_{N}\right)$, where $\Phi_{i} \in$ $R\left[X_{1}, \ldots, X_{N}\right]$, we define a cycle for Φ as a k-tuple $\bar{x}_{0}, \bar{x}_{1}, \ldots, \bar{x}_{k-1}$ of different elements of R^{N} such that

$$
\Phi\left(\bar{x}_{0}\right)=\bar{x}_{1}, \quad \Phi\left(\bar{x}_{1}\right)=\bar{x}_{2}, \quad \ldots, \quad \Phi\left(\bar{x}_{k-1}\right)=\bar{x}_{0} .
$$

The number k is called the length of this cycle.
Let $\mathcal{C Y C} \mathcal{L}(R, N)$ be the set of all possible cycle lengths for polynomial mappings in N variables with coefficients from R (we clearly assume that the elements of the considered cycles lie in R^{N}).

The main motivation to write this paper is finding $\mathcal{C Y C} \mathcal{L}(Z, N)$ for all natural N. As an exercise, one may treat the equality $\mathcal{C Y C} \mathcal{L}(Z, 1)=\{1,2\}$. In [Pe2], the formula $\mathcal{C Y C} \mathcal{L}(Z, 2)=\{24,18,16$, and divisors $\}$ was established. In [Pe5], it was shown that the biggest element in $\mathcal{C Y} \mathcal{C} \mathcal{L}(Z, N)$ equals $2 \cdot 4^{N}+o\left(4^{N}\right)$.

One of the main ingredients in obtaining these results is a local-to-global principle for polynomial cycles (see Section 2.4). This principle for $N \geq 2$ gives an expression of $\mathcal{C Y C} \mathcal{L}(R, N)$ in terms of $\mathcal{C Y C} \mathcal{L}\left(R_{\mathfrak{p}}, N\right)$, where \mathfrak{p} runs over the family of all nonzero prime ideals of a Dedekind domain R.

Thus, in order to determine $\mathcal{C Y C} \mathcal{L}(Z, N)$, it is enough to determine $\mathcal{C Y C} \mathcal{L}\left(Z_{p}, N\right)$ for all prime p, where Z_{p} denotes the ring of p-adic numbers. In fact (see Theorem 2), it suffices to determine $\mathcal{C Y C} \mathcal{L}\left(Z_{2}, N\right)$ and $\mathcal{C Y C} \mathcal{L}\left(Z_{3}, N\right)$.

Using the notation of Theorem 1 and Section 2.1, we see that Z_{p} is a discrete valuation ring (DVR) of characteristic zero satisfying $e=1$ (and therefore unramified). For the rings Z_{p}, the number f equals 1 .

The main result of this paper is the following:

[^0]
[^0]: Received January 7, 2014. Revision received August 2, 2014. This work is supported by the MNiSW grant N N201 366636.

