On the Supersingular $K 3$ Surface in Characteristic 5 with Artin Invariant 1

Toshiyuki Katsura, Shigeyuki Kondo, \& Ichiro Shimada

Dedicated to Professor Igor V. Dolgachev on the occasion of his 70th birthday.

Abstract

We present three interesting projective models of the supersingular $K 3$ surface X in characteristic 5 with Artin invariant 1 . For each projective model, we determine smooth rational curves on X with the minimal degree and the projective automorphism group. Moreover, by using the superspecial Abelian surface we construct six sets of 16 disjoint smooth rational curves on X and show that they form a beautiful configuration.

1. Introduction

Let Y be a $K 3$ surface defined over an algebraically closed field k, and $\rho(Y)$ the Picard number of Y. Then it is well known that $1 \leq \rho(Y) \leq 20$ or $\rho(Y)=22$. The last case $\rho(Y)=22$ occurs only when k is of positive characteristic. A $K 3$ surface is called supersingular if its Picard number is 22 . Let Y be a supersingular $K 3$ surface in characteristic $p \geq 3$. Let S_{Y} denote its Néron-Severi lattice, and let S_{Y}^{\vee} be the dual of S_{Y}. Then Artin [1] proved that S_{Y}^{\vee} / S_{Y} is a p-elementary Abelian group of rank 2σ, where σ is an integer such that $1 \leq \sigma \leq 10$. This integer σ is called the Artin invariant of Y. It is known that the isomorphism class of S_{Y} depends only on p and σ (Rudakov and Shafarevich [26]). On the other hand, supersingular $K 3$ surfaces with Artin invariant σ form a ($\sigma-1$)-dimensional family, and a supersingular $K 3$ surface with Artin invariant 1 in characteristic p is unique up to isomorphisms (Ogus [24; 25], Rudakov and Shafarevich [26]).

Supersingular $K 3$ surfaces in small characteristic p with Artin invariant 1 are especially interesting because big finite groups act on them by automorphisms. (See Dolgachev and Keum [11].) For example, the group PGL(3, $\left.\mathbb{F}_{4}\right) \ltimes \mathbb{Z} / 2 \mathbb{Z}$ in case $p=2$ or $\operatorname{PGU}\left(4, \mathbb{F}_{9}\right)$ in case $p=3$ acts on the $K 3$ surface by automorphisms. Moreover, these $K 3$ surfaces contain a finite set of smooth rational curves on which the above group acts as symmetries. For example, in case $p=2$, there exist 42 smooth rational curves that form a (215)-configuration (see Dolgachev and Kondo [12], Katsura and Kondo [16]). In case $p=3$, the Fermat quartic surface is a supersingular $K 3$ surface with Artin invariant 1, and it contains 112 lines (e.g., Katsura and Kondo [15], Kondo and Shimada [19]).

[^0]
[^0]: Received November 26, 2013. Revision received September 6, 2014.
 Research partially supported by JSPS Grants-in-Aid for Scientific Research (C) No. 24540053,
 (S) No. 22224001, (C) No. 25400042.

