On the Supersingular *K*3 Surface in Characteristic 5 with Artin Invariant 1

Toshiyuki Katsura, Shigeyuki Kondo, & Ichiro Shimada

Dedicated to Professor Igor V. Dolgachev on the occasion of his 70th birthday.

ABSTRACT. We present three interesting projective models of the supersingular K3 surface X in characteristic 5 with Artin invariant 1. For each projective model, we determine smooth rational curves on X with the minimal degree and the projective automorphism group. Moreover, by using the superspecial Abelian surface we construct six sets of 16 disjoint smooth rational curves on X and show that they form a beautiful configuration.

1. Introduction

Let *Y* be a *K*3 surface defined over an algebraically closed field *k*, and $\rho(Y)$ the Picard number of *Y*. Then it is well known that $1 \le \rho(Y) \le 20$ or $\rho(Y) = 22$. The last case $\rho(Y) = 22$ occurs only when *k* is of positive characteristic. A *K*3 surface is called *supersingular* if its Picard number is 22. Let *Y* be a supersingular *K*3 surface in characteristic $p \ge 3$. Let S_Y denote its Néron–Severi lattice, and let S_Y^{\vee} be the dual of S_Y . Then Artin [1] proved that S_Y^{\vee}/S_Y is a *p*-elementary Abelian group of rank 2σ , where σ is an integer such that $1 \le \sigma \le 10$. This integer σ is called the *Artin invariant* of *Y*. It is known that the isomorphism class of S_Y depends only on *p* and σ (Rudakov and Shafarevich [26]). On the other hand, supersingular *K*3 surfaces with Artin invariant σ form a ($\sigma - 1$)-dimensional family, and a supersingular *K*3 surface with Artin invariant 1 in characteristic *p* is unique up to isomorphisms (Ogus [24; 25], Rudakov and Shafarevich [26]).

Supersingular K3 surfaces in *small* characteristic p with Artin invariant 1 are especially interesting because big finite groups act on them by automorphisms. (See Dolgachev and Keum [11].) For example, the group PGL(3, \mathbb{F}_4) $\ltimes \mathbb{Z}/2\mathbb{Z}$ in case p = 2 or PGU(4, \mathbb{F}_9) in case p = 3 acts on the K3 surface by automorphisms. Moreover, these K3 surfaces contain a finite set of smooth rational curves on which the above group acts as symmetries. For example, in case p = 2, there exist 42 smooth rational curves that form a (21₅)-configuration (see Dolgachev and Kondo [12], Katsura and Kondo [16]). In case p = 3, the Fermat quartic surface is a supersingular K3 surface with Artin invariant 1, and it contains 112 lines (e.g., Katsura and Kondo [15], Kondo and Shimada [19]).

Received November 26, 2013. Revision received September 6, 2014.

Research partially supported by JSPS Grants-in-Aid for Scientific Research (C) No. 24540053, (S) No. 22224001, (C) No. 25400042.