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The Additive Problem with One Cube
and Three Cubes of Primes

Lilu Zhao

Abstract. In this paper, we establish that all positive integers up to
N but at most O(N25/27+ε) exceptions can be represented as the sum
of a cube and three cubes of primes. This improves upon the earlier
result O(N17/18+ε) obtained by Ren and Tsang [4].

1. Introduction

In 1949, Roth [5] investigated the expression of positive integers n as the sum of
a cube and three cubes of primes, that is,

n = x3 + p3
1 + p3

2 + p3
3, (1.1)

where x is a positive integer, and p1, p2, p3 are primes. The philosophy of the
Hardy–Littlewood circle method suggests that every sufficiently large integer n

can be expressed in the form (1.1). Roth [5] proved that almost all positive integers
n can be written as (1.1). In order to introduce Roth’s theorem more precisely, we
denote by r(n) the number of representations of n in the form (1.1) and define

E(N) = |{1 ≤ n ≤ N : r(n) = 0}|. (1.2)

Roth’s theorem actually states that E(N) � N log−A N for arbitrary large con-
stant A > 0. Roth’s theorem has been refined by Ren [2] to

E(N) � N169/170. (1.3)

Recently, further improvement has been obtained in a series of papers by Ren and
Tsang [3; 4]. In particular, it was proved in [3] that E(N) � N1,271/1,296+ε , and
it was established in [4] that

E(N) � N17/18+ε. (1.4)

In this paper, we establish the following result.

Theorem 1.1. Let E(N) be defined in (1.2). Then for any ε > 0, we have

E(N) � N25/27+ε. (1.5)

We establish Theorem 1.1 by the Hardy–Littlewood circle method. We employ
the technique developed by Vaughan [6; 7]. This technique was recently used by
Koichi Kawada to prove that all large even integers can be written as the sum
of seven cubes of primes and a cube with at most two prime factors. In prior
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