The Additive Problem with One Cube and Three Cubes of Primes

Lilu Zhao

Abstract. In this paper, we establish that all positive integers up to N but at most $O\left(N^{25 / 27+\varepsilon}\right)$ exceptions can be represented as the sum of a cube and three cubes of primes. This improves upon the earlier result $O\left(N^{17 / 18+\varepsilon}\right)$ obtained by Ren and Tsang [4].

1. Introduction

In 1949, Roth [5] investigated the expression of positive integers n as the sum of a cube and three cubes of primes, that is,

$$
\begin{equation*}
n=x^{3}+p_{1}^{3}+p_{2}^{3}+p_{3}^{3} \tag{1.1}
\end{equation*}
$$

where x is a positive integer, and p_{1}, p_{2}, p_{3} are primes. The philosophy of the Hardy-Littlewood circle method suggests that every sufficiently large integer n can be expressed in the form (1.1). Roth [5] proved that almost all positive integers n can be written as (1.1). In order to introduce Roth's theorem more precisely, we denote by $r(n)$ the number of representations of n in the form (1.1) and define

$$
\begin{equation*}
E(N)=|\{1 \leq n \leq N: r(n)=0\}| . \tag{1.2}
\end{equation*}
$$

Roth's theorem actually states that $E(N) \ll N \log ^{-A} N$ for arbitrary large constant $A>0$. Roth's theorem has been refined by Ren [2] to

$$
\begin{equation*}
E(N) \ll N^{169 / 170} . \tag{1.3}
\end{equation*}
$$

Recently, further improvement has been obtained in a series of papers by Ren and Tsang [3; 4]. In particular, it was proved in [3] that $E(N) \ll N^{1,271 / 1,296+\varepsilon}$, and it was established in [4] that

$$
\begin{equation*}
E(N) \ll N^{17 / 18+\varepsilon} \tag{1.4}
\end{equation*}
$$

In this paper, we establish the following result.
Theorem 1.1. Let $E(N)$ be defined in (1.2). Then for any $\varepsilon>0$, we have

$$
\begin{equation*}
E(N) \ll N^{25 / 27+\varepsilon} \tag{1.5}
\end{equation*}
$$

We establish Theorem 1.1 by the Hardy-Littlewood circle method. We employ the technique developed by Vaughan [6;7]. This technique was recently used by Koichi Kawada to prove that all large even integers can be written as the sum of seven cubes of primes and a cube with at most two prime factors. In prior

[^0]
[^0]: Received November 19, 2013. Revision received August 6, 2014.
 This work is supported by the National Natural Science Foundation of China (Grant No. 11401154).

