Lower Bound for the Geometric Type from a Generalized Estimate in the $\bar{\partial}$ -Neumann Problem – a New Approach by Peak Functions

TRAN VU KHANH

1. Introduction

In a series of seminal papers in the Annals of Mathematics [Cat83; Cat87], Catlin proved the equivalence of the finite type of a boundary (cf. [D'A82]) with the existence of a subelliptic estimate for the $\bar{\partial}$ -Neumann problem by triangulating through the t^{ε} -property (see below)

- (i) finite type $m \Rightarrow t^{\varepsilon}$ -property with $\varepsilon = m^{-n^2m^{n^2}}$;
- (ii) t^{ε} -property $\Rightarrow \varepsilon$ -subelliptic estimate;
- (iii) ε -subelliptic estimate \Rightarrow finite type *m* for $m \leq \frac{1}{\varepsilon}$.

Here, the t^{ε} -property of a boundary $b\Omega$ is a special case of a more general "fproperty" defined as follows. For a smooth strictly increasing function f: [1 +] ∞) \rightarrow [1, + ∞) with $f(t) \le t^{1/2}$, the f-property at z_0 means the existence of a neighborhood U of z_o , of constants C_1 , C_2 , and of a family of functions $\{\phi_{\delta}\}$ such that

- 1) ϕ_{δ} are plurisubharmonic and C^2 on U, and $-1 \le \phi_{\delta} \le 0$; 2) $\partial \bar{\partial} \phi_{\delta} \ge C_1 f (\delta^{-1})^2 I d$ and $|D\phi_{\delta}| \le C_2 \delta^{-1}$ for any $z \in U \cap \{z \in \Omega : -\delta < 0\}$ r(z) < 0, where *r* is a defining function of Ω .

The results in steps (ii) and (iii) were generalized in [KZ10; KZ12]. In particular, in [KZ10] it was shown that the f-property implies an f-estimate for any f, and in [KZ12] that an f-estimate with $\frac{f}{\log} \to \infty$ at ∞ implies that the type along a complex analytic variety has a lower bound with the rate G with

$$G(\delta) = \left(\left(\frac{f}{\log} \right)^* (\delta^{-1}) \right)^{-1}, \tag{1.1}$$

where the superscript * denotes the inverse function. Combining the above results, we obtain the following:

THEOREM 1.1 (Catlin [Cat83; Cat87]; Khanh and Zampieri [KZ10; KZ12]). Let Ω be a pseudoconvex domain in \mathbb{C}^n with C^{∞} -smooth boundary $b\Omega$, and z_o be a boundary point. Assume that the f-property holds at z_0 with $\frac{f}{\log} \nearrow \infty$ as $t \to \infty$.

Received March 1, 2013. Revision received June 10, 2013.

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2012.16.