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Euler–Mellin Integrals and A-Hypergeometric Functions

Christine Berkesch, Jens Forsgård, & Mikael Passare†

Abstract. We consider integrals that generalize both Mellin trans-
forms of rational functions of the form 1/f and classical Euler inte-
grals. The domains of integration of our so-called Euler–Mellin in-
tegrals are naturally related to the coamoeba of f , and the compo-
nents of the complement of the closure of this coamoeba give rise
to a family of these integrals. After performing an explicit meromor-
phic continuation of Euler–Mellin integrals, we interpret them as A-
hypergeometric functions and discuss their linear independence and
relation to Mellin–Barnes integrals.

1. Introduction

In the classical theory of hypergeometric functions, a prominent role is played by
the Euler integral formula

2F1(s; t;u) = �(t)

�(s1)�(s2)

∫ 1

0
xs1−1(1 − x)t−s1−1(1 − ux)−s2 dx,

which yields an analytic continuation of the Gauss hypergeometric series 2F1

from the unit disk |u| < 1 to the larger domain | arg(1 − u)| < π . However, this
Euler integral is not symmetric in s1 and s2, even though the function 2F1 enjoys
such symmetry. Following Erdélyi [Erd37], we can introduce another variable of
integration and obtain the symmetric formula

2F1(s; t;u) = G(s, t)

∫ 1

0

∫ 1

0
xs1−1ys2−1(1 − x)t−s1−1

× (1 − y)t−s2−1(1 − uxy)−t dx ∧ dy,

where G(s, t) = �(t)2

�(s1)�(s2)�(t − s1)�(t − s2)
. (1.1)

After making the substitutions z = x/(1 − x), w = y/(1 − y), and c = 1 − u, we
find that the double integral in (1.1) takes the simple form∫ ∞

0

∫ ∞

0

zs1ws2

(1 + z + w + czw)t

dz ∧ dw

zw
, (1.2)
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