Examples of Dynamical Degree Equals Arithmetic Degree

Shu Kawaguchi \& Joseph H. Silverman

Introduction

Let X / \mathbb{C} be a smooth projective variety, let $f: X \rightarrow X$ be a dominant rational map, and let $f^{*}: \mathrm{NS}(X)_{\mathbb{R}} \rightarrow \mathrm{NS}(X)_{\mathbb{R}}$ be the induced map on the Néron-Severi group $\mathrm{NS}(X)_{\mathbb{R}}=\mathrm{NS}(X) \otimes \mathbb{R}$. Further, let $\rho(T, V)$ denote the spectral radius of a linear transformation $T: V \rightarrow V$ of a real or complex vector space. Then the (first) dynamical degree of f is the quantity

$$
\delta_{f}=\lim _{n \rightarrow \infty} \rho\left(\left(f^{n}\right)^{*}, \mathrm{NS}(X)_{\mathbb{R}}\right)^{1 / n}
$$

Alternatively, if we let H be any ample divisor on X and $N=\operatorname{dim}(X)$, then δ_{f} is also given by the formula

$$
\delta_{f}=\lim _{n \rightarrow \infty}\left(\left(f^{n}\right)^{*} H \cdot H^{N-1}\right)^{1 / n}
$$

See [13, Proposition 1.2(iii)] and [19]. Dynamical degrees have been much studied over the past couple of decades; see [19] for a partial list of references.

In two earlier papers [19; 26], the authors studied an analogous arithmetic degree, which we now describe. Assume that X and f are defined over $\overline{\mathbb{Q}}$, and write $X(\overline{\mathbb{Q}})_{f}$ for the set of points P whose forward f-orbit

$$
\mathcal{O}_{f}(P)=\left\{P, f(P), f^{2}(P), \ldots\right\}
$$

is well defined. (There are always many such points; see [1].) Further, let

$$
h_{X}: X(\overline{\mathbb{Q}}) \rightarrow[0, \infty)
$$

be a Weil height on X relative to an ample divisor, and let $h_{X}^{+}=\max \left\{1, h_{X}\right\}$. The arithmetic degree of f at $P \in X(\overline{\mathbb{Q}})_{f}$ is the quantity

$$
\begin{equation*}
\alpha_{f}(P)=\lim _{n \rightarrow \infty} h_{X}^{+}\left(f^{n}(P)\right)^{1 / n}, \tag{1}
\end{equation*}
$$

assuming that the limit exists. We also define upper and lower arithmetic degrees by the formulas

$$
\bar{\alpha}_{f}(P)=\limsup _{n \rightarrow \infty} h_{X}^{+}\left(f^{n}(P)\right)^{1 / n} \quad \text { and } \quad \underline{\alpha}_{f}(P)=\liminf _{n \rightarrow \infty} h_{X}^{+}\left(f^{n}(P)\right)^{1 / n}
$$

[^0]
[^0]: Received December 18, 2012. Revision received August 27, 2013.
 The first author's research is supported by KAKENHI 24740015. The second author's research is supported by NSF DMS-0854755 and Simons Foundation grant \#241309.

