Proper Holomorphic Mappings on Flag Domains of SU(p,q) Type on Projective Spaces

SUI-CHUNG NG

1. Introduction

The objects of study in this paper are the domains in \mathbb{P}^n defined by

$$\mathbb{D}_n^{\ell} = \left\{ [z_0, \dots, z_n] \in \mathbb{P}^n : \sum_{j=0}^{\ell} |z_j|^2 > \sum_{j=\ell+1}^n |z_j|^2 \right\}$$

and the proper holomorphic mappings among them. They are examples of the so-called *flag domains* in \mathbb{P}^n when the latter is regarded as a flag variety. More explicitly, they are open orbits of the real forms $SU(\ell + 1, n - \ell)$ of the complex simple Lie group $SL(n+1, \mathbb{C})$ when both of which act on \mathbb{P}^n as biholomorphisms.

The domain \mathbb{D}_n^0 is just the complex unit *n*-ball embedded in \mathbb{P}^n , and there has been an extensive literature in the study of their proper holomorphic mappings in the last couple of decades. For a survey, see [Fo]. In general, when the codimension is high, the set of proper holomorphic mappings between complex unit balls is large and difficult to determine. On the other hand, in [BH] and [BEH] the domains \mathbb{D}_n^{ℓ} with $\ell \ge 1$ and the associated holomorphic mappings are studied by methods in Cauchy–Riemann geometry. It appears that there is in general much more rigidity when $\ell \ge 1$. Indeed, there is one essential difference between the complex unit *n*-ball and the domains \mathbb{D}_n^{ℓ} with $\ell \ge 1$, for the latter contain linear subspaces of \mathbb{P}^n . Motivated by this, the author of this paper studied in [N] the domains \mathbb{D}_n^{ℓ} , $\ell \ge 1$, and their generalizations in Grassmannians by exploiting the structure of the moduli spaces of compact complex analytic subvarieties. Rigidity results analogous to those of [BH] are obtained in a more geometric way.

We will follow the terminology in [BH; BEH] and call ℓ the *signature* of the domain \mathbb{D}_n^{ℓ} . As far as rigidity of holomorphic mappings among those domains is concerned, the determining factor should be the difference in signatures rather than the codimension. This is illustrated in [BH], for instance, where it is shown that if the domain and target are of the same signature then any local proper holomorphic map is the restriction of a linear embedding between the ambient projective spaces. On the other hand, Baouendi, Ebenfelt, and Huang [BEH] studied the situations with a small signature difference. Together with other results, they proved that there is partial rigidity for local proper holomorphic mappings $h: U \subset \mathbb{D}_n^{\ell} \to \mathbb{D}_n^{\ell'}$

Received September 1, 2012. Revision received July 11, 2013.