Veronese Quotient Models of $\overline{\mathrm{M}}_{0,n}$ and Conformal Blocks

Angela Gibney, David Jensen, Han-Bom Moon, & David Swinarski

Introduction

The moduli space of Deligne–Mumford stable *n*-pointed rational curves, $\overline{M}_{0,n}$, is a natural compactification of the moduli space of smooth pointed genus 0 curves and has figured prominently in the literature. A central motivating question is to describe other compactifications of $M_{0,n}$ that receive morphisms from $\overline{M}_{0,n}$. From the perspective of Mori theory, this is tantamount to describing semi-ample divisors on $\overline{M}_{0,n}$. This work is concerned with two recent constructions that each yield an abundance of such semi-ample divisors on $\overline{M}_{0,n}$ and with the relationship between them. The first construction comes from geometric invariant theory (GIT) and the second from conformal field theory.

There are birational models of $\overline{M}_{0,n}$ obtained via GIT that are moduli spaces of pointed rational normal curves of fixed degree *d*, where the curves and the marked points are weighted by nonnegative rational numbers $(\gamma, A) = (\gamma, (a_1, ..., a_n))$ [Gi; GiJM; GiSi]. These *Veronese quotients* $V_{\gamma,A}^d$ are remarkable in that they specialize to nearly every known compactification of $M_{0,n}$ [GiJM]. There are birational morphisms from $\overline{M}_{0,n}$ to these GIT quotients, and their natural polarization can be pulled back along this morphism to yield semi-ample divisors $\mathcal{D}_{\gamma,A}$ on $\overline{M}_{0,n}$.

A second recent development in the birational geometry of $\overline{M}_{0,n}$ involves divisors stat arise from conformal field theory. These divisors are first Chern classes of vector bundles of conformal blocks $\mathbb{V}(\mathfrak{g}, \ell, \vec{\lambda})$ on the moduli stack $\overline{\mathcal{M}}_{g,n}$. Constructed using the representation theory of affine Lie algebras [Fa; TUY], these vector bundles depend on the choice of a simple Lie algebra \mathfrak{g} , a nonnegative integer ℓ , and an *n*-tuple $\vec{\lambda} = (\lambda_1, \dots, \lambda_n)$ of dominant integral weights in the Weyl alcove for \mathfrak{g} of level ℓ . For the definition of vector bundles of conformal blocks are globally generated when g = 0 [Fa, Lemma 2.5], and their first Chern classes $c_1(\mathbb{V}(\mathfrak{g}, \ell, \vec{\lambda})) = \mathbb{D}(\mathfrak{g}, \ell, \vec{\lambda})$, the conformal block divisors, are semi-ample.

For $\gamma = 0$, it was shown in [Gi; GiG] that the divisors $\mathcal{D}_{0,A}$ coincide with conformal block divisors for \mathfrak{sl}_r and level 1. Our guiding philosophy is that there is a

Received August 23, 2012. Revision received April 15, 2013.

The first-named author is supported by NSF Grant no. DMS-1201268.