Cohomology of Local Systems on Loci of d-elliptic Abelian Surfaces

Dan Petersen

1. Introduction

To an irreducible representation of $\mathrm{Sp}_{2 g}$ with highest weight vector λ, one can associate in a natural way a local system \mathbf{W}_{λ} on the moduli spaces \mathcal{A}_{g} and hence also on \mathcal{M}_{g}. One reason for studying these local systems is that their complex (resp., ℓ-adic) cohomology groups will contain spaces of elliptic and Siegel modular forms (resp., their associated ℓ-adic Galois representations) as subquotients. In particular, one can study modular forms by looking at the cohomology of these local systems-and vice versa.

When $g=1$ this is described by the Eichler-Shimura theory and in particular by its Hodge-theoretic/ ℓ-adic interpretation [8], which expresses the cohomology of such a local system in terms of spaces of modular forms on the corresponding modular curve. See [12, Sec. 4] for a summary. For higher genera the situation is not as well understood. The (integer-valued) Euler characteristics of these local systems on \mathcal{M}_{2} were calculated in [17]. Their Euler characteristics on \mathcal{M}_{g} and \mathcal{A}_{g} for $g=2,3$, now taken in the Grothendieck group of ℓ-adic Galois representations, have been investigated by means of point counting in the sequence of papers [10; 11; 2; 3].

Another reason to be interested in such local systems is that they arise when computing the cohomology of relative configuration spaces. For instance, in the case of \mathcal{M}_{g}, the results of [16] imply that calculating the Euler characteristics of all of these local systems on \mathcal{M}_{g} is equivalent to calculating the \mathbb{S}_{n}-equivariant Euler characteristic of $\mathcal{M}_{g, n}$ for all n.

In this paper, we shall study the restriction of these local systems to certain loci in \mathcal{A}_{2} of abelian surfaces with a degree d^{2} isogeny to a product of elliptic curves. We call such surfaces d-elliptic and denote the (normalization of the) locus of d-elliptic surfaces by \mathcal{E}_{d}. A curve of genus 2 is d-elliptic in the usual sense-that is, it admits a degree d covering onto an elliptic curve if and only if its Jacobian is d-elliptic in this sense. Already the simplest case $d=1$ (i.e., the locus $\mathcal{A}_{2} \backslash \mathcal{M}_{2}$ of products of elliptic curves) is not entirely trivial, as one needs the branching formula of Section 3.

[^0]
[^0]: Received June 16, 2012. Revision received September 13, 2012.
 The author is supported by the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine.

