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Cohomology of Local Systems on Loci
of d-elliptic Abelian Surfaces

Dan Petersen

1. Introduction

To an irreducible representation of Sp2g with highest weight vector λ, one can
associate in a natural way a local system Wλ on the moduli spaces Ag and hence
also on Mg. One reason for studying these local systems is that their complex
(resp., �-adic) cohomology groups will contain spaces of elliptic and Siegel mod-
ular forms (resp., their associated �-adic Galois representations) as subquotients.
In particular, one can study modular forms by looking at the cohomology of these
local systems—and vice versa.

When g = 1 this is described by the Eichler–Shimura theory and in particular
by its Hodge-theoretic/�-adic interpretation [8], which expresses the cohomology
of such a local system in terms of spaces of modular forms on the corresponding
modular curve. See [12, Sec. 4] for a summary. For higher genera the situation is
not as well understood. The (integer-valued) Euler characteristics of these local
systems on M2 were calculated in [17]. Their Euler characteristics on Mg and
Ag for g = 2, 3, now taken in the Grothendieck group of �-adic Galois representa-
tions, have been investigated by means of point counting in the sequence of papers
[10; 11; 2; 3].

Another reason to be interested in such local systems is that they arise when
computing the cohomology of relative configuration spaces. For instance, in the
case of Mg , the results of [16] imply that calculating the Euler characteristics of
all of these local systems on Mg is equivalent to calculating the Sn-equivariant
Euler characteristic of Mg,n for all n.

In this paper, we shall study the restriction of these local systems to certain loci
in A2 of abelian surfaces with a degree d 2 isogeny to a product of elliptic curves.
We call such surfaces d-elliptic and denote the (normalization of the) locus of
d-elliptic surfaces by Ed . A curve of genus 2 is d-elliptic in the usual sense—that
is, it admits a degree d covering onto an elliptic curve if and only if its Jacobian is
d-elliptic in this sense. Already the simplest case d = 1 (i.e., the locus A2 \ M2

of products of elliptic curves) is not entirely trivial, as one needs the branching
formula of Section 3.
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