Transference of Density

P. D. Humke \& M. Laczkovich

1. Introduction and Notation

Let $H=\{(x, y): y \geq 0\}$ denote the upper half-plane. This paper concerns various linear densities of a set $E \subset H$ at points of \mathbb{R}, which we identify with the boundary of H.

We shall denote by $L(x, \theta)$ the ray $\{(x+t \cos \theta, t \sin \theta): t \geq 0\}$ for every $x \in \mathbb{R}$ and $\theta \in(0, \pi)$. The segment $\{(x+t \cos \theta, t \sin \theta): 0 \leq t \leq r\}$ will be denoted by $L(x, \theta, r)$. The density of E along the ray $L(x, \theta)$ is defined by

$$
\begin{equation*}
d(E, x, \theta)=\lim _{r \rightarrow 0+} \frac{\lambda(E \cap L(x, \theta, r))}{r}, \tag{1}
\end{equation*}
$$

where λ denotes the linear measure (one-dimensional Hausdorff measure) in \mathbb{R}^{2}. Replacing the limit in (1) by lim sup and liminf, we obtain the respective upper and lower densities $\bar{d}(E, x, \theta)$ and $\underline{d}(E, x, \theta)$. Should E be non-Borel, there are several additional possibilities defined by replacing λ in (1) with either the linear outer measure λ^{*} or the linear inner measure λ_{*} and again replacing the limit by either \lim sup and liminf. So, for example, the upper inner density of E along the ray $L(x, \theta)$ is defined as

$$
\bar{d}_{*}(E, x, \theta)=\limsup _{r \rightarrow 0+} \frac{\lambda_{*}(E \cap L(x, \theta, r))}{r} .
$$

If $d \#$ denotes any of these density operators, then the set E is said to have positive density relative to $d \#$ at a point $x \in \mathbb{R}$ if $d \#(x)>0$.

In this paper we are interested in whether linear densities in one sense or another are transferable. For example, if we know that a set E has one of these linear densities in a given direction, can we infer that there are points at which E has a linear density of the same or different variety in another direction? The strongest hypothesis for linear densities would be that a set E has full linear density in a given direction and at every $x \in \mathbb{R}$, and the weakest conclusion is that there is a point $x_{0} \in \mathbb{R}$ and a direction θ_{0} at which $\bar{d}^{*}\left(E, x_{0}, \theta_{0}\right)>0$.

If $E \subset H$ is Borel, then we denote by $D(E, x)$ the two-dimensional density of E at the point $(x, 0)$ relative to H. That is,

$$
D(E, x)=\lim _{h \rightarrow 0+} \frac{\lambda_{2}(E \cap B(x, h))}{\lambda_{2}(H \cap B(x, h))},
$$

Received July 16, 2012. Revision received April 23, 2013.

