On Degree Growth and Stabilization of Three-Dimensional Monomial Maps

Jan-Li Lin

1. Introduction

Given a rational self-map $f: X \rightarrow X$ on an n-dimensional Kähler manifold X, one can define a pullback map $f^{*}: H^{p, p}(X) \rightarrow H^{p, p}(X)$ for $0 \leq p \leq n$. In general, the pullback does not commute with iteration; that is, $\left(f^{*}\right)^{k} \neq\left(f^{k}\right)^{*}$. Following Sibony ([Si]; see also [FoSi]), we call the map f (algebraically) stable if the action on the cohomology of X is compatible with iterations. More precisely, f is called p-stable if the pullback on $H^{p, p}(X)$ satisfies $\left(f^{*}\right)^{k}=\left(f^{k}\right)^{*}$ for all $k \in \mathbb{N}$.

If f is not p-stable on X, one might try to find a birational change of coordinate $h: X^{\prime} \rightarrow X$ such that $\tilde{f}=h^{-1} \circ f \circ h$ is p-stable. This is not always possible even for $p=1$, as shown by Favre [Fa]. However, for $p=1$ and $n=2$, one can find such a stable model (with at worst quotient singularities) for quite a few classes of surface maps [DFa; FaJ]. Also for $p=1$, such a model can be obtained for certain monomial maps [Fa; JW; L].

For an $n \times n$ integer matrix $A=\left(a_{i, j}\right)$, the associated monomial map $f_{A}:\left(\mathbb{C}^{*}\right)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{n}$ is defined by

$$
f_{A}\left(x_{1}, \ldots, x_{n}\right)=\left(\prod_{j} x_{j}^{a_{1, j}}, \ldots, \prod_{j} x_{j}^{a_{n, j}}\right)
$$

The morphism f_{A} extends to a rational map, which is also denoted f_{A}, on any n-dimensional toric variety. The question of finding a stable model for f_{A} (or showing that there is no stable model for certain f_{A}) has been studied in [Fa; JW; L]. In particular, the stabilization problem is fully classified for dimension two in [Fa] and [JW].

In this paper, we focus on the case when $n=3$ and A is diagonalizable. We deal with both the 1 -stable and the 2 -stable problems. There are more cases than dimension two. A main case where a model that is both 1-stable and 2-stable can be obtained by performing proper modification is summarized in the following theorem.

Theorem 1.1. Let Δ be a fan in $N \cong \mathbb{Z}^{3}$, and let $f_{A}: X(\Delta) \rightarrow X(\Delta)$ be the monomial map associated to A. Suppose that A is diagonalizable and that, for each eigenvalue μ of $A, \mu / \bar{\mu}$ is a root of unity. Then there exists a complete

Received June 6, 2012. Revision received January 17, 2013.

