On the Lang-Trotter and Sato-Tate Conjectures on Average for Polynomial Families of Elliptic Curves

Igor E. Shparlinski

1. Introduction

1.1. Background. For a prime p, we denote by \mathbb{F}_{p} the finite field with p elements.

Given an elliptic curve \mathbf{E} over \mathbb{Q} and a prime p we use $\mathbf{E}\left(\mathbb{F}_{p}\right)$ to denote the set of the \mathbb{F}_{p}-rational points of the reduction of \mathbf{E} modulo p, provided that p does not divide the discriminant $\Delta(\mathbf{E})$ of \mathbf{E}, together with a point at infinity. This set forms an abelian group under an appropriate composition rule and satisfies the Hasse bound:

$$
\begin{equation*}
\left|\# \mathbf{E}\left(\mathbb{F}_{p}\right)-p-1\right| \leq 2 \sqrt{p} \tag{1}
\end{equation*}
$$

see [35] for background on elliptic curves.
Accordingly, we denote by $\Pi^{\mathrm{LT}}(\mathbf{E}, t ; x)$ the number of primes $3<p \leq x$ (with $p \nmid \Delta(\mathbf{E}))$ for which $\# \mathbf{E}\left(\mathbb{F}_{p}\right)=p+1-t$. The Lang-Trotter conjecture asserts that if \mathbf{E} does not have complex multiplication then the asymptotic formula

$$
\begin{equation*}
\Pi^{\mathrm{LT}}(\mathbf{E}, t ; x) \sim c(\mathbf{E}, t) \frac{\sqrt{x}}{\log x}, \quad x \rightarrow \infty \tag{2}
\end{equation*}
$$

holds for some explicitly given constant $c(\mathbf{E}, t) \geq 0$ depending only on \mathbf{E} and t. Furthermore, the usual interpretation of the value $c(\mathbf{E}, t)=0$ is $\Pi^{\mathrm{LT}}(\mathbf{E}, t ; x)=$ $O(1)$.

Since the Lang-Trotter conjecture (2) remains widely open (see [13; 14; 15; $26 ; 28 ; 29 ; 30 ; 32 ; 37]$), it is natural to obtain its analogues "on average" over various interesting families of curves. As one example, for integers a and b such that $4 a^{3}+27 b^{2} \neq 0$, we denote by $\mathbf{E}_{a, b}$ the elliptic curve defined by the affine Weierstra β equation,

$$
\mathbf{E}_{a, b}: Y^{2}=X^{3}+a X+b
$$

and put

$$
\Pi_{a, b}^{\mathrm{LT}}(t ; x)=\Pi^{\mathrm{LT}}\left(\mathbf{E}_{a, b}, t ; x\right)
$$

Fouvry and Murty [17] initiated the study of $\Pi_{a, b}^{\mathrm{LT}}(t ; x)$ and similar quantities on average, and they showed that the asymptotic formula

[^0]
[^0]: Received April 30, 2012. Revision received October 10, 2012.
 This work was supported in part by ARC Grant no. DP1092835.

