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1. Introduction

1.1. Background. For a primep, we denote by Fp the finite field withp elements.
Given an elliptic curve E over Q and a prime p we use E(Fp) to denote the set

of the Fp-rational points of the reduction of E modulo p, provided that p does not
divide the discriminant �(E) of E , together with a point at infinity. This set forms
an abelian group under an appropriate composition rule and satisfies the Hasse
bound :

|#E(Fp) − p − 1| ≤ 2
√
p; (1)

see [35] for background on elliptic curves.
Accordingly, we denote by �LT(E , t; x) the number of primes 3 < p ≤ x (with

p � �(E)) for which #E(Fp) = p + 1 − t. The Lang–Trotter conjecture asserts
that if E does not have complex multiplication then the asymptotic formula

�LT(E , t; x) ∼ c(E , t)

√
x

log x
, x → ∞, (2)

holds for some explicitly given constant c(E , t) ≥ 0 depending only on E and t.

Furthermore, the usual interpretation of the value c(E , t) = 0 is �LT(E , t; x) =
O(1).

Since the Lang–Trotter conjecture (2) remains widely open (see [13; 14; 15;
26; 28; 29; 30; 32; 37]), it is natural to obtain its analogues “on average” over
various interesting families of curves. As one example, for integers a and b such
that 4a3 + 27b2 �= 0, we denote by Ea,b the elliptic curve defined by the affine
Weierstraß equation,

Ea,b : Y 2 = X3 + aX + b,

and put
�LT

a,b(t; x) = �LT(Ea,b, t; x).
Fouvry and Murty [17] initiated the study of �LT

a,b(t; x) and similar quantities
on average, and they showed that the asymptotic formula
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