Log-terminal Smoothings of Graded Normal Surface Singularities

JONATHAN WAHL

Introduction

Let (X,0) be the germ of an isolated complex normal singularity. Suppose that its canonical module K_X is \mathbb{Q} -Cartier; thus, the canonical sheaf $K_{X-\{0\}}$ has some finite order m. The $index\ 1$ (or canonical) cover $(T,0) \to (X,0)$ is obtained by normalizing the corresponding cyclic cover. Note that (T,0) has an isolated normal singularity with K_T Cartier. If T is Cohen–Macaulay, then it is Gorenstein; we call such an (X,0) \mathbb{Q} -Gorenstein. (Warning: some authors require only that X be Cohen–Macaulay with K_X \mathbb{Q} -Cartier.) That T is Cohen–Macaulay is automatic if X has dimension 2 but not in general, even if X itself is Cohen–Macaulay. In fact, Singh [16, 6.1] constructs an example of an isolated 3-dimensional rational (hence Cohen–Macaulay) singularity X with K_X \mathbb{Q} -Cartier whose index 1 cover is not Cohen–Macaulay.

Now suppose (X,0) is a \mathbb{Q} -Gorenstein normal surface singularity (e.g., a rational singularity). We will say that a smoothing $f:(\mathcal{X},0)\to(\mathbb{C},0)$ of X is \mathbb{Q} -Gorenstein if it is the quotient of a smoothing of the index 1 cover of X. The basic examples are certain smoothings of the cyclic quotient singularities of type $rn^2/rnq-1$, first mentioned in [8,(5.9)]. In this particular case, \mathcal{X} is a cyclic quotient of \mathbb{C}^3 —it is even a *terminal* singularity—and a cyclic quotient by a smaller group is the total space of the smoothing of the index 1 cover of X (which is an A_{rn-1} -singularity). The importance of \mathbb{Q} -Gorenstein smoothings was first noticed in the work of Kollár and Shepherd-Barron [7]. But even if the (now 3-dimensional) total space \mathcal{X} of a smoothing of X has $K_{\mathcal{X}}$ \mathbb{Q} -Cartier, it does not immediately follow that the smoothing is \mathbb{Q} -Gorenstein.

The main point of this work is that, in an important special case, one can deduce that a smoothing is \mathbb{Q} -Gorenstein by proving the much stronger result that the total space \mathcal{X} can be chosen to be *log-terminal*. The result is surprising since the original singularities X are generally not even log-canonical (i.e., have discrepancies $-\infty$).

In the early 1980s the author constructed many examples (both published and unpublished) of surface singularities that admit smoothings with Milnor number 0—that is, smoothings whose Milnor fibre is a QHD (rational homology disk).