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1. Introduction

Let Sg denote a closed, connected, orientable surface of genus g. The hyperelliptic
Torelli group SI(Sg) is the subgroup of the mapping class group Mod(Sg) con-
sisting of all elements that act trivially on H1(Sg; Z) and that commute with the
isotopy class of some fixed hyperelliptic involution s : Sg → Sg , that is, any order 2
homeomorphism acting by −I on H1(Sg; Z). Every hyperelliptic involution of Sg

is conjugate to the one shown in Figure 1.

. . .

Figure 1 Rotation by π about the indicated axis is a hyperelliptic involution

The group SI(Sg) arises in algebraic geometry in the following context. Let
T (Sg) denote the cover of the moduli space of Riemann surfaces corresponding
to the Torelli subgroup I(Sg) of Mod(Sg). The period mapping is a function from
T (Sg) to the Siegel upper half-space of rank g and is a 2-fold branched cover onto
its image. The branch locus is the set of hyperelliptic points of T (Sg), the union
of the fixed sets for the actions of the various hyperelliptic involutions on T (Sg).

These fixed sets are pairwise disjoint, and the fundamental group of each compo-
nent is isomorphic to SI(Sg). Because of this, SI(Sg) is related, for example, to
the topological Schottky problem; see [9, Prob. 1].

A basic tool in the theory of mapping class groups is the Birman exact sequence.
This sequence relates the mapping class group of a surface with marked points to
the mapping class group of the surface obtained by forgetting the marked points;
see Section 3. This is a key ingredient for performing inductive arguments on the
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