Double Covers of EPW-Sextics

Kieran G. O’Grady

0. Introduction

EPW-sextics are defined as follows. Let V be a 6 -dimensional complex vector space. Choose a volume form vol: $\bigwedge^{6} V \xrightarrow{\sim} \mathbb{C}$ and equip $\bigwedge^{3} V$ with the symplectic form

$$
\begin{equation*}
(\alpha, \beta)_{V}:=\operatorname{vol}(\alpha \wedge \beta) \tag{0.0.1}
\end{equation*}
$$

Let $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ be the symplectic Grassmannian parameterizing Lagrangian subspaces of $\bigwedge^{3} V$; of course, $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ does not depend on the choice of volume form. Let $F \subset \bigwedge^{3} V \otimes \mathcal{O}_{\mathbb{P}(V)}$ be the subvector bundle with fiber

$$
\begin{equation*}
F_{v}:=\left\{\alpha \in \bigwedge^{3} V \mid v \wedge \alpha=0\right\} \tag{0.0.2}
\end{equation*}
$$

over $[v] \in \mathbb{P}(V)$. Observe that $(\cdot, \cdot)_{V}$ is zero on F_{v} and that $2 \operatorname{dim}\left(F_{v}\right)=20=$ $\operatorname{dim} \bigwedge^{3} V$; hence F is a Lagrangian subvector bundle of the trivial symplectic vector bundle on $\mathbb{P}(V)$ with fiber $\bigwedge^{3} V$. Next choose $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. Let

$$
\begin{equation*}
F \xrightarrow{\lambda_{A}}\left(\bigwedge^{3} V / A\right) \otimes \mathcal{O}_{\mathbb{P}(V)} \tag{0.0.3}
\end{equation*}
$$

be the composition of the inclusion $F \subset \bigwedge^{3} V \otimes \mathcal{O}_{\mathbb{P}(V)}$ followed by the quotient map. Since $\mathrm{rk} F=\operatorname{dim}(V / A)$, the determinant of λ_{A} makes sense. Let

$$
Y_{A}:=V\left(\operatorname{det} \lambda_{A}\right) .
$$

A straightforward computation gives that det $F \cong \mathcal{O}_{\mathbb{P}(V)}(-6)$ and hence $\operatorname{det} \lambda_{A} \in$ $H^{0}\left(\mathcal{O}_{\mathbb{P}(V)}(6)\right)$. It follows that if $\operatorname{det} \lambda_{A} \neq 0$ then Y_{A} is a sextic hypersurface. As is easily checked, $\operatorname{det} \lambda_{A} \neq 0$ for generic $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ (note that there exist "pathological" As such that $\lambda_{A}=0$; e.g., $A=F_{v_{0}}$). An EPW-sextic (after Eisenbud, Popescu, and Walter [5]) is a sextic hypersurface in \mathbb{P}^{5} that is projectively equivalent to Y_{A} for some $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. Let Y_{A} be an EPW-sextic. One can construct a coherent sheaf ξ_{A} on Y_{A} and a multiplication map $\xi_{A} \times \xi_{A} \rightarrow \mathcal{O}_{Y_{A}}$ that gives $\mathcal{O}_{Y_{A}} \oplus \xi_{A}$ the structure of an $\mathcal{O}_{Y_{A}}$-algebra; this is known to experts (see [3]), and we will give the construction in Section 1.2. The double EPW-sextic associated to A is $X_{A}:=\operatorname{Spec}\left(\mathcal{O}_{Y_{A}} \oplus \xi_{A}\right)$; we let $f_{A}: X_{A} \rightarrow Y_{A}$ be the structure morphism. In [12] we considered X_{A} for generic A and proved that it is a hyper-Kähler deformation of (K3) ${ }^{[2]}$ (the blow-up of the diagonal in the symmetric square of a K3

[^0]
[^0]: Received December 19, 2011. Revision received September 27, 2012. The author was supported by PRIN 2007.

