Double Covers of EPW-Sextics

KIERAN G. O'GRADY

0. Introduction

EPW-sextics are defined as follows. Let V be a 6-dimensional complex vector space. Choose a volume form vol: $\bigwedge^6 V \xrightarrow{\sim} \mathbb{C}$ and equip $\bigwedge^3 V$ with the symplectic form

$$(\alpha, \beta)_V := \operatorname{vol}(\alpha \wedge \beta). \tag{0.0.1}$$

Let $\mathbb{LG}(\bigwedge^3 V)$ be the symplectic Grassmannian parameterizing Lagrangian subspaces of $\bigwedge^3 V$; of course, $\mathbb{LG}(\bigwedge^3 V)$ does not depend on the choice of volume form. Let $F \subset \bigwedge^3 V \otimes \mathcal{O}_{\mathbb{P}(V)}$ be the subvector bundle with fiber

$$F_{v} := \left\{ \alpha \in \bigwedge^{3} V \mid v \land \alpha = 0 \right\}$$
(0.0.2)

over $[v] \in \mathbb{P}(V)$. Observe that $(\cdot, \cdot)_V$ is zero on F_v and that $2 \dim(F_v) = 20 = \dim \bigwedge^3 V$; hence *F* is a Lagrangian subvector bundle of the trivial symplectic vector bundle on $\mathbb{P}(V)$ with fiber $\bigwedge^3 V$. Next choose $A \in \mathbb{LG}(\bigwedge^3 V)$. Let

$$F \xrightarrow{\lambda_A} \left(\bigwedge^3 V/A\right) \otimes \mathcal{O}_{\mathbb{P}(V)} \tag{0.0.3}$$

be the composition of the inclusion $F \subset \bigwedge^3 V \otimes \mathcal{O}_{\mathbb{P}(V)}$ followed by the quotient map. Since rk $F = \dim(V/A)$, the determinant of λ_A makes sense. Let

$$Y_A := V(\det \lambda_A).$$

A straightforward computation gives that det $F \cong \mathcal{O}_{\mathbb{P}(V)}(-6)$ and hence det $\lambda_A \in H^0(\mathcal{O}_{\mathbb{P}(V)}(6))$. It follows that if det $\lambda_A \neq 0$ then Y_A is a sextic hypersurface. As is easily checked, det $\lambda_A \neq 0$ for generic $A \in \mathbb{LG}(\bigwedge^3 V)$ (note that there exist "pathological" As such that $\lambda_A = 0$; e.g., $A = F_{v_0}$). An *EPW-sextic* (after Eisenbud, Popescu, and Walter [5]) is a sextic hypersurface in \mathbb{P}^5 that is projectively equivalent to Y_A for some $A \in \mathbb{LG}(\bigwedge^3 V)$. Let Y_A be an EPW-sextic. One can construct a coherent sheaf ξ_A on Y_A and a multiplication map $\xi_A \times \xi_A \to \mathcal{O}_{Y_A}$ that gives $\mathcal{O}_{Y_A} \oplus \xi_A$ the structure of an \mathcal{O}_{Y_A} -algebra; this is known to experts (see [3]), and we will give the construction in Section 1.2. The *double EPW-sextic* associated to A is $X_A := \operatorname{Spec}(\mathcal{O}_{Y_A} \oplus \xi_A)$; we let $f_A : X_A \to Y_A$ be the structure morphism. In [12] we considered X_A for generic A and proved that it is a hyper-Kähler deformation of $(K3)^{[2]}$ (the blow-up of the diagonal in the symmetric square of a K3

Received December 19, 2011. Revision received September 27, 2012.

The author was supported by PRIN 2007.