Characteristic Polynomials, η -Complexes, and Freeness of Tame Arrangements

TAKURO ABE

1. Introduction

We use notation from Section 2 to state the main result of this paper. Let \mathcal{A} be a central ℓ -arrangement over an arbitrary field \mathbb{K} . Fix $H_0 \in \mathcal{A}$, and let (\mathcal{A}'', m) be the Ziegler restriction of \mathcal{A} onto H_0 . Let $d\mathcal{A}$ be the deconing of \mathcal{A} with respect to H_0 . Let

$$\chi_0(\mathcal{A},t) = \chi(d\mathcal{A},t) = \sum_{i=0}^{\ell-1} (-1)^{\ell-1-i} b_{\ell-1-i} t^i$$

be a reduced characteristic polynomial of A, and let

$$\chi(\mathcal{A}'', m, t) = \sum_{i=0}^{\ell-1} (-1)^{\ell-1-i} \sigma_{\ell-1-i} t^{i}$$

be a characteristic polynomial of (\mathcal{A}'', m) . Note that $\chi_0(\mathcal{A}, t)$ is defined combinatorially and $\chi(\mathcal{A}'', m)$ algebraically. It is well known that $b_0 = \sigma_0 = 1$ and $b_1 = \sigma_1 = |\mathcal{A}| - 1 = |m|$ (use Theorem 2.3, for example). The inequality $b_2 \ge \sigma_2$ has recently been proved, and the equality $b_2 = \sigma_2$ is closely related to the freeness of \mathcal{A} [2, Thm. 5.1]. This is a generalization of Yoshinaga's freeness criterion for 3-arrangements [13, Thm. 3.2]. Also, it is known that $b_i = \sigma_i$ for $i = 0, 1, \dots, \ell - 1$ when \mathcal{A} is a free arrangement (see the proof of Corollary 1.2). Hence it is natural to ask whether $b_i \ge \sigma_i$ holds for $i \ge 3$ and whether or not the equality is related to freeness. In fact, we do not know whether σ_i is nonnegative for $i \ge 3$. In this paper, we assume tameness and give the following answer.

THEOREM 1.1. Let A be a central ℓ -arrangement. Fix $H_0 \in A$ and let (A'', m) be the Ziegler restriction of A with respect to H_0 . If A and (A'', m) are both tame, then $b_i \ge \sigma_i \ge 0$ $(i = 0, 1, ..., \ell - 1)$.

Theorem 1.1 gives a lower bound of $|\chi_0(\mathcal{A}, -1)|$ in terms of $\chi(\mathcal{A}'', m, -1)$; in particular, $|\chi_0(\mathcal{A}, -1)| \ge |\chi(\mathcal{A}'', m, -1)|$. Note that $|\chi_0(\mathcal{A}, -1)|$ is the number of chambers when $\mathbb{K} = \mathbb{R}$. In the category of tame arrangements, then, we say that

Received October 3, 2011. Revision received May 2, 2012.

The author is partially supported by JSPS Grants-in-Aid for Young Scientists (B) no. 21740014.