Polyhedral Divisors and SL_2 -Actions on Affine \mathbb{T} -Varieties

IVAN ARZHANTSEV & ALVARO LIENDO

Introduction

Let **k** be an algebraically closed field of characteristic 0, let *M* be a lattice of rank *n*, let $N = \text{Hom}(M, \mathbb{Z})$ be the dual lattice of *M*, and let \mathbb{T} be the algebraic torus Spec **k**[*M*] such that *M* is the character lattice of \mathbb{T} and *N* is the 1-parameter subgroup lattice of \mathbb{T} .

A \mathbb{T} -variety X is a normal algebraic variety endowed with an effective regular action of \mathbb{T} . The *complexity* of a \mathbb{T} -action is the codimension of a general orbit; since the \mathbb{T} -action on X is effective, the complexity of X equals dim X – rank M. For an affine variety X, introducing a \mathbb{T} -action on X is the same as endowing $\mathbf{k}[X]$ with an M-grading. There are well-known combinatorial descriptions of \mathbb{T} -varieties. We refer the reader to [D1] and [Fu] for the case of toric varieties, to [K+, Chaps. 2 and 4] and [T2] for the complexity-1 case, and to [AH; AHS] for the general case. In this paper we use the approach in [AH].

Any affine toric variety is completely determined by a polyhedral cone $\sigma \subseteq N_{\mathbb{Q}}$. Similarly, the description of a normal affine \mathbb{T} -variety *X* due to Altmann and Hausen [AH] involves the data $(Y, \sigma, \mathfrak{D})$, where *Y* is a normal semiprojective variety, $\sigma \subseteq N_{\mathbb{Q}} := N \otimes \mathbb{Q}$ is a polyhedral cone, and \mathfrak{D} is a divisor on *Y* whose coefficients are polyhedra in $N_{\mathbb{Q}}$ with tail cone σ . The divisor \mathfrak{D} is called a σ -polyhedral divisor on *Y* (see Section 1.1 for details).

Let *X* be a \mathbb{T} -variety endowed with a regular *G*-action, where *G* is any linear algebraic group. We say that the *G*-action on *X* is *compatible* if the image of *G* in Aut(*X*) is normalized but not centralized by \mathbb{T} . Furthermore, we say that the *G*-action is *of fiber type* if the general orbits are contained in the \mathbb{T} -orbit closures, and *of horizontal type* otherwise [FZ; L1].

Let now $\mathbb{G}_a = \mathbb{G}_a(\mathbf{k})$ be the additive group of \mathbf{k} . It is well known that a \mathbb{G}_a action on an affine variety X is equivalent to a locally nilpotent derivation (LND) of $\mathbf{k}[X]$. A description of compatible \mathbb{G}_a -actions on an affine \mathbb{T} -variety—or, equivalently, of homogeneous LNDs on $\mathbf{k}[X]$ —is available in the case where X is of complexity ≤ 1 [L1] or the \mathbb{G}_a -action is of fiber type [L2] in terms of a generalization of Demazure's [D1] roots of a fan (see Sections 1.3 and 1.4).

Received May 27, 2011. Revision received January 28, 2012.

The first author was partially supported by RFBR grant 09-01-00648-a and the Simons Foundation.