Betti Numbers of Smooth Schubert Varieties and the Remarkable Formula of Kostant, Macdonald, Shapiro, and Steinberg

ERSAN AKYILDIZ & JAMES B. CARRELL

1. Introduction

Let *G* be a semi-simple linear algebraic group over \mathbb{C} , *B* a Borel subgroup of *G*, and $T \subset B$ a maximal torus. Let Φ denote the root system of the pair (G, T) and Φ^+ the set of positive roots determined by *B*. Let $\alpha_1, \ldots, \alpha_\ell$ denote the basis of Φ associated to Φ^+ , and recall the *height* of $\alpha = \sum k_i \alpha_i \in \Phi$ is defined to be ht $(\alpha) = \sum k_i$. Finally, let $W = N_G(T)/T$ be the Weyl group of (G, T).

A remarkable formula—originally noticed by A. Shapiro and proved by Kostant [13] using the representation theory of the principal three-dimensional subgroup of G, by Macdonald [14] using the holomorphic Lefschetz formula, and by Steinberg [16] by verification—says that

$$\prod_{i=1}^{\ell} (1+t^2+\dots+t^{2m_i}) = \prod_{\alpha \in \Phi^+} \frac{1-t^{2\operatorname{ht}(\alpha)+2}}{1-t^{2\operatorname{ht}(\alpha)}},\tag{1}$$

where m_1, \ldots, m_ℓ are the exponents of *G*. The identity (1) can also be formulated combinatorically. Suppose h_i is the number of roots of height *i* where *k* is the height of the highest root. That is, k + 1 is the Coxeter number of (G, T). Then $h_i \ge h_{i+1}$, so (h_1, h_2, \ldots, h_k) is a partition of $|\Phi^+|$. Then (1) is equivalent to saying that (h_1, h_2, \ldots, h_k) is conjugate to the partition determined by the exponents m_i of (G, T) (see Lemma 1).

A cohomological proof of (1), which we will generalize in this paper, goes as follows. First, by the well-known Borel picture of the cohomology algebra of G/B as the coinvariant algebra of W, the Poincaré polynomial P(G/B, t) of the flag variety G/B has the expression

$$P(G/B,t) = \prod_{i=1}^{\ell} \frac{1 - t^{2d_i}}{1 - t^2},$$
(2)

where d_1, \ldots, d_ℓ are the degrees of the fundamental generators of the ring of *W*-invariant polynomials on the Lie algebra t of *T*. By a different cohomological method, reviewed in Section 2 (cf. [1, Cor. 1]), one also obtains that

Received February 6, 2011. Revision received February 13, 2012.