Betti Numbers of Smooth Schubert Varieties and the Remarkable Formula of Kostant, Macdonald, Shapiro, and Steinberg

Ersan Akyildiz \& James B. Carrell

1. Introduction

Let G be a semi-simple linear algebraic group over \mathbb{C}, B a Borel subgroup of G, and $T \subset B$ a maximal torus. Let Φ denote the root system of the pair (G, T) and Φ^{+}the set of positive roots determined by B. Let $\alpha_{1}, \ldots, \alpha_{\ell}$ denote the basis of Φ associated to Φ^{+}, and recall the height of $\alpha=\sum k_{i} \alpha_{i} \in \Phi$ is defined to be $\operatorname{ht}(\alpha)=\sum k_{i}$. Finally, let $W=N_{G}(T) / T$ be the Weyl group of (G, T).

A remarkable formula-originally noticed by A. Shapiro and proved by Kostant [13] using the representation theory of the principal three-dimensional subgroup of G, by Macdonald [14] using the holomorphic Lefschetz formula, and by Steinberg [16] by verification-says that

$$
\begin{equation*}
\prod_{i=1}^{\ell}\left(1+t^{2}+\cdots+t^{2 m_{i}}\right)=\prod_{\alpha \in \Phi^{+}} \frac{1-t^{2 \mathrm{ht}(\alpha)+2}}{1-t^{2 \mathrm{ht}(\alpha)}} \tag{1}
\end{equation*}
$$

where m_{1}, \ldots, m_{ℓ} are the exponents of G. The identity (1) can also be formulated combinatorically. Suppose h_{i} is the number of roots of height i where k is the height of the highest root. That is, $k+1$ is the Coxeter number of (G, T). Then $h_{i} \geq h_{i+1}$, so $\left(h_{1}, h_{2}, \ldots, h_{k}\right)$ is a partition of $\left|\Phi^{+}\right|$. Then (1) is equivalent to saying that ($h_{1}, h_{2}, \ldots, h_{k}$) is conjugate to the partition determined by the exponents m_{j} of (G, T) (see Lemma 1).

A cohomological proof of (1), which we will generalize in this paper, goes as follows. First, by the well-known Borel picture of the cohomology algebra of G / B as the coinvariant algebra of W, the Poincaré polynomial $P(G / B, t)$ of the flag variety G / B has the expression

$$
\begin{equation*}
P(G / B, t)=\prod_{i=1}^{\ell} \frac{1-t^{2 d_{i}}}{1-t^{2}} \tag{2}
\end{equation*}
$$

where d_{1}, \ldots, d_{ℓ} are the degrees of the fundamental generators of the ring of W invariant polynomials on the Lie algebra \mathfrak{t} of T. By a different cohomological method, reviewed in Section 2 (cf. [1, Cor. 1]), one also obtains that

