Geodesic Continued Fractions A. F. BEARDON, M. HOCKMAN, & I. SHORT

1. Introduction

Every rational number can be expressed uniquely in the form p/q, where p and q are coprime integers and q is positive; we describe such rationals as *reduced*. Two reduced rationals p/q and r/s are *Farey neighbors* if |ps - qr| = 1. As usual, we adjoin the point ∞ to the set \mathbb{Q} of rationals to form \mathbb{Q}_{∞} . We then define 1/0 to be the reduced form of ∞ , and p/q to be a Farey neighbor of ∞ if and only if |p.0 - q.1| = 1 (i.e., if and only if p/q is an integer). The *Farey graph* \mathcal{F} is the graph whose set of vertices is \mathbb{Q}_{∞} and whose edges join each pair of Farey neighbors (and only these). We denote the path in \mathcal{F} that passes through the vertices v_1, \ldots, v_n in this order by $\langle v_1, \ldots, v_n \rangle$. A concrete realization of \mathcal{F} is obtained by joining each pair of Farey neighbors by a hyperbolic line in the upper half-plane model \mathbb{H} of the hyperbolic plane. It is well known that any two such hyperbolic lines induces the *Farey tessellation* of \mathbb{H} into mutually disjoint, nonoverlapping, ideal hyperbolic triangles (see e.g. [7; 8; 15]). Henceforth \mathcal{F} refers to this model of the Farey graph, which is illustrated in Figure 1.

Figure 1 The Farey graph

Received July 2, 2010. Revision received September 28, 2011.

Part of the third author's work was carried out during an LMS-EPSRC Durham Symposium in 2011.