Geodesic Continued Fractions

A. F. Beardon, M. Hockman, \& I. Short

1. Introduction

Every rational number can be expressed uniquely in the form p / q, where p and q are coprime integers and q is positive; we describe such rationals as reduced. Two reduced rationals p / q and r / s are Farey neighbors if $|p s-q r|=1$. As usual, we adjoin the point ∞ to the set \mathbb{Q} of rationals to form \mathbb{Q}_{∞}. We then define $1 / 0$ to be the reduced form of ∞, and p / q to be a Farey neighbor of ∞ if and only if $|p .0-q .1|=1$ (i.e., if and only if p / q is an integer). The Farey graph \mathcal{F} is the graph whose set of vertices is \mathbb{Q}_{∞} and whose edges join each pair of Farey neighbors (and only these). We denote the path in \mathcal{F} that passes through the vertices v_{1}, \ldots, v_{n} in this order by $\left\langle v_{1}, \ldots, v_{n}\right\rangle$. A concrete realization of \mathcal{F} is obtained by joining each pair of Farey neighbors by a hyperbolic line in the upper half-plane model \mathbb{H} of the hyperbolic plane. It is well known that any two such hyperbolic lines have at most an endpoint in common, and this set of hyperbolic lines induces the Farey tessellation of \mathbb{H} into mutually disjoint, nonoverlapping, ideal hyperbolic triangles (see e.g. [7; 8;15]). Henceforth \mathcal{F} refers to this model of the Farey graph, which is illustrated in Figure 1.

Figure 1 The Farey graph

[^0]
[^0]: Received July 2, 2010. Revision received September 28, 2011.
 Part of the third author's work was carried out during an LMS-EPSRC Durham Symposium in 2011.

