A Relation between Height, Area, and Volume for Compact Constant Mean Curvature Surfaces in $\mathbb{M}^{2} \times \mathbb{R}$

Claudemir Leandro \& Harold Rosenberg

1. Introduction

Let Σ be a compact CMC- H surface in $\mathbb{M}^{2} \times \mathbb{R}$ with $\Gamma=\partial \Sigma \subset \mathbb{M}^{2} \times\{0\}$, where \mathbb{M}^{2} is a Hadamard surface with curvature $K_{\mathbb{M}^{2}} \leq-\kappa \leq 0$. Let Σ_{1} be the connected component of the part of Σ above the plane $Q=\mathbb{M}^{2} \times\{0\}$, and let h be the height of Σ_{1} above Q. We will determine a volume V_{1} bounded by Σ_{1} and prove that

$$
h \leq \frac{H\left|\Sigma_{1}\right|}{2 \pi}-\frac{\kappa V_{1}}{4 \pi} ;
$$

here $\left|\Sigma_{1}\right|$ is the area of Σ_{1}. We also state conditions under which equality occurs.
We then let $\mathbb{M}^{2}=\mathbb{H}^{2}$ be the hyperbolic plane of curvature -1 , with $\Sigma \subset \mathbb{H}^{2} \times \mathbb{R}$ a compact CMC- H surface as just described. Finally, we give a condition that guarantees Σ lies in a half-space determined by Q.

We introduce some definitions and notation as follows. Let $\gamma \subset Q$ be a complete geodesic. We call $P=\gamma \times \mathbb{R}$ a vertical plane of $\mathbb{M}^{2} \times \mathbb{R}$. Let $\beta(t)$ be a complete geodesic of Q, with $\beta(0)$ in the vertical plane P and $\beta^{\prime}(0)$ orthogonal to P. Let $P_{\beta}(t)$ be the vertical plane of $\mathbb{M}^{2} \times \mathbb{R}$ that passes through $\beta(t)$ and is orthogonal to β at $\beta(t)$. We call $P_{\beta}(t)$ the vertical plane foliation determined by P and β.

2. The Main Result

Let $\Sigma \subset \mathbb{M}^{2} \times \mathbb{R}$ be a CMC- H surface as before and suppose that Σ meets Q transversally along $\Gamma=\partial \Sigma \subset Q$. We put $\Sigma^{+}=\Sigma \cap\left(\mathbb{M}^{2} \times \mathbb{R}_{+}\right)$and $\Sigma^{-}=$ $\Sigma \cap\left(\mathbb{M}^{2} \times \mathbb{R}_{-}\right)$. There is a connected component of Σ^{+}or Σ^{-}that contains Γ. We can assume, without loss of generality, that $\Gamma \subset \partial \Sigma^{+}$. We use Σ_{1} to denote the connected component of Σ^{+}that contains Γ.

Let $\hat{\Sigma}_{1}$ be the symmetry of Σ_{1} through the plane Q. Then $\hat{\Sigma}_{1} \cup \Sigma_{1}$ is a compact embedded surface with no boundary, and with corners along $\partial \Sigma_{1}$, that bounds a domain U in $\mathbb{M}^{2} \times \mathbb{R}$. Let U_{1} be the intersection of U with the half-space above Q. Thus U_{1} is a bounded domain in $\mathbb{M}^{2} \times \mathbb{R}$ whose boundary, ∂U_{1}, consists of the smooth connected surface Σ_{1} and the union Ω of finitely smooth, compact and connected surfaces in Q. We define A^{+}to be the area of Σ_{1}.

Received May 26, 2010. Revision received September 21, 2011.

