A Property of Quasi-diagonal Forms

A. Schinzel

The aim of this paper is to prove the following result.

THEOREM. Let k be a positive integer and let $F_i \in \mathbb{Z}[\mathbf{x}_i]$ be a form of degree k, *where* \mathbf{x}_i ($i = 1, 2, \ldots$) *are disjoint vectors of variables. Assume that*

(∗) *either not all forms are semidefinite of the same sign, or all forms are nonsingular.*

Then there exists a positive integer s_0 *such that, for all s, every integer represented by* $\sum_{i=1}^{s} F_i(\mathbf{x}_i)$ *over* \mathbb{Z} *is represented by* $\sum_{i=1}^{s_0} F_i(\mathbf{x}_i)$ *over* \mathbb{Z} *.*

If $k = 2$, *then the condition* (∗) *can be omitted.* J. Szejko has conjectured that the condition (∗) is superfluous.

Corollary. *Let* ki *be a bounded infinite sequence of positive integers, and let* $F_i[\mathbf{x}_i]$ be an infinite sequence of nonsingular forms of degree k_i with the \mathbf{x}_i dis*joint. Then there exists a positive integer* s_0 *such that, for all s, every integer represented by* $\sum_{i=1}^s F_i(\mathbf{x}_i)$ *over* $\mathbb Z$ *is also represented by* $\sum_{i=1}^{s_0} F_i(\mathbf{x}_i)$ *over* $\mathbb Z$ *.*

REMARK 1. The assertion is false when $k_i = 2^i$ and $F_i = x_i^{k_i}$ $(i = 1, 2, ...)$. It may be enough to assume that $\sum_{i=1}^{\infty} \frac{1}{k_i} = \infty$.

NOTATION. For a given field K and a form $F \in K[x_1, \ldots, x_r]$, we use $D(F)$ to denote the Netto discriminant of F—that is, the resultant of $\frac{\partial F}{\partial x_i}$ (i = 1, 2, ...,r); note that $D(F)$ differs from the true discriminant of F by a constant factor (see [6, p. 434]). Also, $h(F, K)$ is the least h such that $F = \sum_{i=1}^{h} G_i H_i$, where $G_i, H_i \in$ $K[x_1, \ldots, x_r]$ are forms of positive degree and $h(F) = h(F, \mathbb{Q})$.

For $a \in \mathbb{Z} \setminus \{0\}$ and p a prime, ord_p a is the highest exponent e such that $p^e|a$ (i.e., $p^e||a$); ord_p 0 = ∞ . For **x** = [x_1, \ldots, x_r] $\in \mathbb{Z}^r$, we have ord_p **x** = $\min_{1 \leq i \leq r} \operatorname{ord}_n x_i$. Finally, $e(x) = \exp\{2\pi i x\}.$

Our proof of the theorem is based on the following series of seventeen lemmas.

LEMMA 1. Let p be a prime, $F \in \mathbb{Z}[\mathbf{x}]$ a form of degree $k = p^{\tau}k_0$, and $k_0 \in$ $\mathbb{Z} \setminus p\mathbb{Z}$ *. Let* $\gamma = \tau + 2$ *if* $p = 2$ *and* $\tau > 0$ *and let* $\gamma = \tau + 1$ *otherwise. If*

Received March 17, 2010. Revision received September 29, 2011.