A Multiplicative Formula for Structure Constants in the Cohomology of Flag Varieties

EdWard Richmond

1. Introduction

Let G be a connected, simply connected, semisimple complex algebraic group and let $P \subseteq Q$ be a pair of parabolic subgroups. Consider the induced sequence of flag varieties

$$
\begin{equation*}
Q / P \hookrightarrow G / P \rightarrow G / Q \tag{1}
\end{equation*}
$$

The goal of this paper is to give a simple multiplicative formula connecting the structure coefficients for the cohomology ring of the three flag varieties in (1) with respect to their Schubert bases. Let W be the Weyl group of G and let $W_{P} \subseteq$ $W_{Q} \subseteq W$ denote the Weyl groups of P and Q, respectively. Let $W^{P} \subseteq W$ denote the set of minimal-length coset representatives in W / W_{P}. For any $w \in W^{P}$, let $\bar{X}_{w} \subseteq G / P$ denote the corresponding Schubert variety and let $\left[X_{w}\right] \in H^{*}(G / P)=$ $H^{*}(G / P, \mathbb{Z})$ denote the Schubert class of \bar{X}_{w}. It is well known that the Schubert classes $\left\{\left[X_{w}\right]\right\}_{w \in W^{P}}$ form an additive basis for cohomology. Similarly, we have Schubert classes $\left[X_{u}\right] \in H^{*}(G / Q)$ for $u \in W^{Q}$ and $\left[X_{v}\right] \in H^{*}(Q / P)$ for $v \in$ $W^{P} \cap W_{Q}$. The letters w, u, and v will be used to denote Schubert varieties in G / P, G / Q, and Q / P, respectively. In Lemma 2.1 we show that, for any $w \in W^{P}$, there is a unique decomposition $w=u v$ with $u \in W^{Q}$ and $v \in W^{P} \cap W_{Q}$. Fix $s \geq 2$ and, for any $w_{1}, \ldots, w_{s} \in W^{P}$ such that $\sum_{k=1}^{s} \operatorname{codim} X_{w_{k}}=\operatorname{dim} G / P$, define the associated structure coefficient (or structure constant) to be the integer c_{w} for

$$
\left[X_{w_{1}}\right] \cdots\left[X_{w_{s}}\right]=c_{w}[\mathrm{pt}] \in H^{*}(G / P)
$$

The following theorem is the first result of this paper.
Theorem 1.1. Let $w_{1}, \ldots, w_{s} \in W^{P}$, and let $u_{k} \in W^{Q}$ and $v_{k} \in W^{P} \cap W_{Q}$ be defined by $w_{k}=u_{k} v_{k}$. Assume that

$$
\begin{equation*}
\sum_{k=1}^{s} \operatorname{codim} X_{w_{k}}=\operatorname{dim} G / P \quad \text { and } \quad \sum_{k=1}^{s} \operatorname{codim} X_{u_{k}}=\operatorname{dim} G / Q \tag{2}
\end{equation*}
$$

If $c_{w}, c_{u}, c_{v} \in \mathbb{Z}_{\geq 0}$ are defined by

[^0]
[^0]: Received March 9, 2010. Revision received October 26, 2010.

