Birational Invariants Defined by Lawson Homology

WENCHUAN HU

1. Introduction

In this paper, all varieties are defined over \mathbb{C} . Let *X* be an *n*-dimensional projective variety. The *Lawson homology* $L_pH_k(X)$ of *p*-cycles is defined by

$$L_p H_k(X) := \pi_{k-2p}(\mathcal{Z}_p(X)) \quad \text{for } k \ge 2p \ge 0,$$

where $\mathcal{Z}_p(X)$ is provided with a natural topology (see [F1; L1; L1] for the quasiprojective case). For general background, the reader is referred to Lawson's survey paper [L2].

In [FM], Friedlander and Mazur showed that there are natural transformations, called *cycle class maps*,

$$\Phi_{p,k}\colon L_pH_k(X)\to H_k(X).$$

DEFINITION 1.

$$L_p H_k(X)_{\text{hom}} := \ker\{\Phi_{p,k} \colon L_p H_k(X) \to H_k(X)\};$$

$$T_p H_k(X) := \operatorname{Image}\{\Phi_{p,k} \colon L_p H_k(X) \to H_k(X)\};$$

$$T_p H_k(X, \mathbb{Q}) := T_p H_k(X) \otimes \mathbb{Q}.$$

The Griffiths group of codimension q-cycles is defined to

Griff^q(X) :=
$$\mathcal{Z}^{q}(X)_{\text{hom}}/\mathcal{Z}^{q}(X)_{\text{alg}}$$

It was proved by Friedlander [F1] that, for any smooth projective variety X, $L_p H_{2p}(X) \cong \mathcal{Z}_p(X)/\mathcal{Z}_p(X)_{alg}$. Therefore

$$L_p H_{2p}(X)_{\text{hom}} \cong \operatorname{Griff}_p(X),$$

where $\operatorname{Griff}_p(X) := \operatorname{Griff}^{n-p}(X)$.

It was shown in [FM, Sec. 7] that the subspaces $T_p H_k(X, \mathbb{Q})$ form a decreasing filtration,

$$\cdots \subseteq T_p H_k(X, \mathbb{Q}) \subseteq T_{p-1} H_k(X, \mathbb{Q}) \subseteq \cdots \subseteq T_0 H_k(X, \mathbb{Q}) = H_k(X, \mathbb{Q}),$$

and that $T_p H_k(X, \mathbb{Q})$ vanishes if 2p > k.

Received August 10, 2009. Revision received July 9, 2010.

This material is based upon work supported by the NSF under agreement no. DMS-0635607.