On the Holomorphic Extension of CR Functions from Nongeneric CR Submanifolds of \mathbb{C}^n : The Positive Defect Case

NICOLAS EISEN

1. Introduction

1.1. Statement of Results

A real submanifold M of \mathbb{C}^n is said to be CR if the dimension of $T_p M \cap iT_p M$ does not depend on p. Here M is a generic submanifold of \mathbb{C}^n if, for any $p \in M$, $T_p M + JT_p M = T_p \mathbb{C}^n$. We say that a vector v in \mathbb{C}^n is *complex transversal* to Mat $p \in M$ if $v \notin \operatorname{span}_{\mathbb{C}} T_p M$. The question we address in this paper is the holomorphic extension of continuous CR functions on nongeneric CR submanifolds of \mathbb{C}^n to wedges whose directions are complex transversal. In [4], we proved that any decomposable CR distribution admits a holomorphic extension to a complex transversal wedge. In this paper, we shall consider the case where CR functions (or distributions) are not decomposable. Define \mathcal{O}_p^{CR} to be the Sussmann manifold through p (the union of the CR orbits through p), which by [9] is a CR submanifold of M of *same CR dimension*. Assume the CR dimension (the complex dimension of $T_p M \cap iT_p M$) of M is k. Then the *defect of M at p* is said to be ℓ if the real dimension of \mathcal{O}_p^{CR} is $2k + \ell$. Our main result is the following theorem.

THEOREM 1. Let M be a smooth (\mathbb{C}^{∞}) nongeneric CR submanifold of \mathbb{C}^n of positive defect at some p. Then, for any v complex transversal to M at p and \mathcal{U} a neighborhood of p, there exists a wedge \mathcal{W} of direction v and with edge a neighborhood $\mathcal{U}' \subset \mathcal{U}$ of p in M such that any continuous CR function on \mathcal{U} extends holomorphically to \mathcal{W} .

1.2. Background

Theorem 1 generalizes results by Nagel and Rudin that imply a version of Theorem 1 in the totally real case. Let *N* be a smooth submanifold of the boundary of Ω , a strictly pseudoconvex domain in \mathbb{C}^n . If *N* is complex tangential $(TN \subset (T(\partial \Omega) \cap iT(\partial \Omega)))$ then *N* is a peak interpolating set (see e.g. [7] or [8]). Given *N*, a totally real nongeneric submanifold of \mathbb{C}^n , one can easily construct Ω as just described and deduce Theorem 1 in the totally real case. As pointed out earlier, we first obtained Theorem 1 for the class of CR functions that are decomposable [4],

Received May 29, 2009. Revision received February 4, 2010.