Properties of Meromorphic φ -normal Functions

RAUNO AULASKARI & JOUNI RÄTTYÄ

1. Introduction

Let $\mathcal{M}(\mathbb{D})$ denote the set of all meromorphic functions in the unit disc $\mathbb{D}:=\{z:|z|<1\}$ of the complex plane \mathbb{C} , and let \mathcal{T} stand for the set of all conformal self maps of \mathbb{D} . The class \mathcal{N} of *normal functions* consists of those $f\in\mathcal{M}(\mathbb{D})$ for which the family $\{f\circ\tau:\tau\in\mathcal{T}\}$ is normal in \mathbb{D} in the sense of Montel (i.e., ∞ is a permitted limit). By Marty's theorem, $f\in\mathcal{N}$ if and only if $\sup_{\tau\in\mathcal{T}}(f\circ\tau)^{\#}(z)$ is bounded on each compact subset of \mathbb{D} . Moreover, Lehto and Virtanen [27] showed that $f\in\mathcal{M}(\mathbb{D})$ is normal if and only if its spherical derivative $f^{\#}(z):=|f'(z)|/(1+|f(z)|^2)$ satisfies $\sup_{z\in\mathbb{D}}f^{\#}(z)(1-|z|^2)<\infty$.

There is a substantial body of literature on normal functions. Apart from the cited paper by Lehto and Virtanen [27], we mention the earlier work by Noshiro [30], the survey paper by Cambell and Wickes [9], and the papers by Anderson, Clunie, and Pommerenke [1], Lohwater and Pommerenke [28], and Zalcman [41] as well as the series of papers by Gavrilov [17; 18; 19], Lappan [23; 24; 25; 26], and Yamashita [38; 39; 40]. For more recent developments, see [5; 7; 11; 13; 20] and the references therein.

The purpose of this paper is to study subsets of $\mathcal{M}(\mathbb{D})$ that are defined by the condition $f^{\#}(z) = \mathcal{O}(\varphi(|z|))$, as $|z| \to 1^-$, where the function $\varphi(r)$ admits a sufficient regularity near 1 and exceeds $1/(1-r^2)$ in growth. These sets are larger than the class $\mathcal N$ of normal functions, and their members will be called φ -normal functions. These concepts are made precise in Definition 1. After that we give several examples of admissible functions φ . At the end of this section we illustrate what it means to change the growth restriction of spherical derivatives from $1/(1-|z|^2)$ of normal functions to $\varphi(|z|)$ of φ -normal functions. Statements of the main results and their connections to existing literature are given in Section 2. Proofs are presented in Sections 3–9.

Definition 1. An increasing function $\varphi: [0,1) \to (0,\infty)$ is called *smoothly increasing* if

$$\varphi(r)(1-r) \to \infty \quad \text{as } r \to 1^-$$
 (1.1)

and

Received May 6, 2009. Revision received February 9, 2010.

This research was supported in part by MEC-Spain MTM2005-07347, MTM2007-30904-E, MTM2008-05891; ESF Research Networking Programme HCAA; and the Academy of Finland 121281.