Lattice Zariski k-ples of Plane Sextic Curves and Z-Splitting Curves for Double Plane Sextics

Ichiro Shimada

1. Introduction

By virtue of the theory of period mapping, lattice theory has become a strong computational tool in the study of complex $K 3$ surfaces. In this paper, we apply this tool to the classification of complex projective plane curves of degree 6 with only simple singularities. In particular, we explain the phenomena of Zariski pairs from a lattice-theoretic point of view.

A simple sextic is a reduced (possibly reducible) complex projective plane curve of degree 6 with only simple singularities. For a simple sextic $B \subset \mathbb{P}^{2}$, we denote by μ_{B} the total Milnor number of B, by $\operatorname{Sing} B$ the singular locus of B, by R_{B} the $A D E$-type of the singular points of B, and by degs $B=\left[d_{1}, \ldots, d_{m}\right]$ the list of degrees $d_{i}=\operatorname{deg} B_{i}$ of the irreducible components B_{1}, \ldots, B_{m} of B.

We have the following equivalence relations among simple sextics.
Definition 1.1. Let B and B^{\prime} be simple sextics.
(1) We write $B \sim_{\text {eqs }} B^{\prime}$ if B and B^{\prime} are contained in the same connected component of an equisingular family of simple sextics.
(2) We say that B and B^{\prime} are of the same configuration type, and write $B \sim_{\mathrm{cfg}}$ B^{\prime}, if there exist tubular neighborhoods $T \subset \mathbb{P}^{2}$ of B and $T^{\prime} \subset \mathbb{P}^{2}$ of B^{\prime} and a homeomorphism $\varphi:(T, B) \xrightarrow{\sim}\left(T^{\prime}, B^{\prime}\right)$ such that (a) $\operatorname{deg} \varphi\left(B_{i}\right)=\operatorname{deg} B_{i}$ holds for each irreducible component B_{i} of B, (b) φ induces a bijection Sing $B \xrightarrow{\sim} \operatorname{Sing} B^{\prime}$, and (c) φ is an analytic isomorphism of plane curve singularities locally around each $P \in \operatorname{Sing} B$. Note that R_{B} and degs B are invariants of the configuration type. (See [4, Rem. 3] for a combinatorial definition of $\sim_{\text {cfg. }}$.)
(3) We say that B and B^{\prime} are of the same embedding type, and write $B \sim_{\text {emb }} B^{\prime}$, if there exists a homeomorphism $\psi:\left(\mathbb{P}^{2}, B\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, B^{\prime}\right)$ such that ψ induces a bijection Sing $B \xrightarrow{\sim} \operatorname{Sing} B^{\prime}$ and such that, locally around each $P \in \operatorname{Sing} B, \psi$ is an analytic isomorphism of plane curve singularities.

It is obvious that

$$
B \sim_{\text {eqs }} B^{\prime} \Longrightarrow B \sim_{\text {emb }} B^{\prime} \Longrightarrow B \sim_{\text {cfg }} B^{\prime},
$$

although the converses do not necessarily hold.

[^0]
[^0]: Received March 19, 2009. Revision received June 5, 2009.
 Partially supported by JSPS Grants-in-Aid for Scientific Research (20340002) and JSPS Core-to-Core Program (18005).

