Lattice Zariski *k*-ples of Plane Sextic Curves and *Z*-Splitting Curves for Double Plane Sextics

ICHIRO SHIMADA

1. Introduction

By virtue of the theory of period mapping, lattice theory has become a strong computational tool in the study of complex *K*3 surfaces. In this paper, we apply this tool to the classification of complex projective plane curves of degree 6 with only simple singularities. In particular, we explain the phenomena of *Zariski pairs* from a lattice-theoretic point of view.

A *simple sextic* is a reduced (possibly reducible) complex projective plane curve of degree 6 with only simple singularities. For a simple sextic $B \subset \mathbb{P}^2$, we denote by μ_B the total Milnor number of *B*, by Sing *B* the singular locus of *B*, by R_B the *ADE*-type of the singular points of *B*, and by degs $B = [d_1, ..., d_m]$ the list of degrees $d_i = \deg B_i$ of the irreducible components $B_1, ..., B_m$ of *B*.

We have the following equivalence relations among simple sextics.

DEFINITION 1.1. Let B and B' be simple sextics.

(1) We write $B \sim_{eqs} B'$ if B and B' are contained in the same connected component of an equisingular family of simple sextics.

(2) We say that *B* and *B'* are of the *same configuration type*, and write $B \sim_{cfg} B'$, if there exist tubular neighborhoods $T \subset \mathbb{P}^2$ of *B* and $T' \subset \mathbb{P}^2$ of *B'* and a homeomorphism $\varphi \colon (T, B) \xrightarrow{\sim} (T', B')$ such that (a) deg $\varphi(B_i) = \deg B_i$ holds for each irreducible component B_i of *B*, (b) φ induces a bijection Sing $B \xrightarrow{\sim}$ Sing *B'*, and (c) φ is an analytic isomorphism of plane curve singularities locally around each $P \in \text{Sing } B$. Note that R_B and degs *B* are invariants of the configuration type. (See [4, Rem. 3] for a combinatorial definition of \sim_{cfg} .)

(3) We say that *B* and *B'* are of the *same embedding type*, and write $B \sim_{\text{emb}} B'$, if there exists a homeomorphism $\psi : (\mathbb{P}^2, B) \xrightarrow{\sim} (\mathbb{P}^2, B')$ such that ψ induces a bijection Sing $B \xrightarrow{\sim}$ Sing *B'* and such that, locally around each $P \in \text{Sing } B$, ψ is an analytic isomorphism of plane curve singularities.

It is obvious that

 $B \sim_{\text{eqs}} B' \implies B \sim_{\text{emb}} B' \implies B \sim_{\text{cfg}} B',$

although the converses do not necessarily hold.

Received March 19, 2009. Revision received June 5, 2009.

Partially supported by JSPS Grants-in-Aid for Scientific Research (20340002) and JSPS Core-to-Core Program (18005).