On the Debarre-de Jong and Beheshti-Starr Conjectures on Hypersurfaces with Too Many Lines

J. M. Landsberg \& Orsola Tommasi

1. Introduction

Let K be an algebraically closed field of characteristic 0 . Write $X_{\text {sing }}$ for the singular points of a variety $X, \mathbb{P}^{n}=K \mathbb{P}^{n}$, and $\mathbb{G}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)=G(2, n+1)$ for the Grassmannian.

The following conjecture essentially states that if $X^{n-1} \subset \mathbb{P}^{n}$ has "too many" lines then, for any point $x \in X$ that has (too many) lines going through it, one of the lines through x will contain a singular point of X.

Conjecture 1.1. Let $X^{n-1} \subset \mathbb{P}^{n}$ be a hypersurface of degree $d \geq n$ and let $\mathbb{F}(X) \subset G(2, n+1)$ denote the Fano scheme of lines on X. Let $B \subset \mathbb{F}(X)$ be an irreducible component of dimension at least $n-2$. Let $\mathcal{I}_{B}:=\{(x, E) \mid x \in X$, $E \in B, x \in \mathbb{P} E\}$, and let π and ρ denote (respectively) the projections to X and B. Let $X_{B}=\pi\left(\mathcal{I}_{B}\right) \subseteq X_{\tilde{\mathcal{C}}}^{x}$ and let $\tilde{\mathcal{C}}_{x}=\pi \rho^{-1} \rho \pi^{-1}(x)$.

Then, for all $x \in X_{B}, \tilde{\mathcal{C}}_{x} \cap X_{\text {sing }} \neq \emptyset$.
If we take hyperplane sections in the case $d=n$, then Conjecture 1.1 would imply the following, which was conjectured independently by Debarre and de Jong.

Conjecture 1.2 (Debarre-de Jong conjecture). Let $X^{n-1} \subset \mathbb{P}^{n}$ be a smooth hypersurface of degree $d \leq n$. Then the dimension of the Fano scheme of lines on X equals $2 n-d-3$.

Our conjecture extends to smaller degrees as follows.
Conjecture 1.3. Let $X^{n-1} \subset \mathbb{P}^{n}$ be a hypersurface of degree $n-\lambda$. Let $B \subset$ $\mathbb{F}(X)$ be an irreducible component of dimension $n-2$ with $\mathcal{I}_{B}, X_{B}, \ldots$ as before. If $\operatorname{codim}\left(X_{B}, X\right) \geq \lambda$ and \mathcal{C}_{x} is reduced for general $x \in X_{B}$, then for all $x \in X_{B}$, $\tilde{\mathcal{C}}_{x} \cap X_{\text {sing }} \neq \emptyset$.

The cases $X_{B}=X$ and $\operatorname{codim}\left(X_{B}, X\right)=n / 2$ are known; for example, they appear in Debarre's unpublished notes containing Conjecture 1.2. In [9], Harris,

[^0]
[^0]: Received March 13, 2009. Revision received August 4, 2009.
 Landsberg supported by NSF Grant no. DMS-0805782.

