The Schwarz–Pick Lemma of High Order in Several Variables

Shaoyu Dai, Huaihui Chen, & Yifei Pan

1. Introduction

Let \mathbb{B}_n be the unit ball in the complex space \mathbb{C}^n of dimension *n*. The unit disk in the complex plane is denoted by \mathbb{D} . For $z = (z_1, ..., z_n)$ and $z' = (z'_1, ..., z'_n)$ in \mathbb{C}^n , denote $\langle z, z' \rangle = z_1 \overline{z}'_1 + \cdots + z_n \overline{z}'_n$ and $|z| = \langle z, z \rangle^{1/2}$.

A multi-index $\alpha = (\alpha_1, ..., \alpha_n)$ of dimension *n* consists of *n* nonnegative integers α_j , $1 \le j \le n$; the degree of a multi-index α is the sum $|\alpha| = \sum_{j=1}^n \alpha_j$; and we denote $\alpha! = \alpha_1! \cdots \alpha_n!$. For $z = (z_1, ..., z_n) \in \mathbb{C}^n$ and a multi-index $\alpha = (\alpha_1, ..., \alpha_n)$, let $z^{\alpha} = \prod_{j=1}^{n} z_j^{\alpha_j}$. A holomorphic function *f* on \mathbb{B}_n can be expressed by $f(z) = \sum_{\alpha} \alpha_{\alpha} z^{\alpha}$. For two multi-indexs $\alpha = (\alpha_1, ..., \alpha_n)$ and $v = (v_1, ..., v_n)$, let $v^{\alpha} = v_1^{\alpha_1}, ..., v_n^{\alpha_n}$. Note that $v_j^{\alpha_j} = 1$ if $v_j = \alpha_j = 0$. Let $\Omega_{n,m}$ be the class of all holomorphic mappings *f* from \mathbb{B}_n into \mathbb{B}_m . For $f \in \Omega_{n,m}$, if $f = (f_1, ..., f_m)$ and $f_j(z) = \sum_{\alpha} \alpha_{j,\alpha} z^{\alpha}$ for j = 1, ..., m, we denote $f(z) = \sum_{\alpha} \alpha_{\alpha} z^{\alpha}$, where $\alpha_{\alpha} = (\alpha_{1,\alpha}, ..., \alpha_{m,\alpha})$.

For $f \in \Omega_{1,1}$, the classical Schwarz–Pick lemma says that

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}$$

holds for $z \in \mathbb{D}$. Recently, this inequality has been generalized to the derivatives of arbitrary order by some authors [DP; MSZ; Zh]. The best result was proved in [DP]. It was proved that

$$\frac{|f^{(k)}(z)|}{1 - |f(z)|^2} \le (1 + |z|)^{k-1} \cdot \frac{k!}{(1 - |z|^2)^k}$$
(1.1)

holds for $f \in \Omega_{1,1}$ with $k \ge 1$ and $z \in \mathbb{D}$. The equality in (1.1) may be attained if z = 0, and the equality statement has been established. If k > 1 and $z \ne 0$, then (1.1) is a strict inequality.

Chen and Liu [CL] generalized (1.1) by proving the following Schwarz–Pick estimate for partial derivatives of arbitrary order of a function $f \in \Omega_{n,1}$:

$$\left|\frac{\partial^{|v|}f(z)}{\partial z_1^{\nu_1}\cdots\partial z_n^{\nu_n}}\right| \le n^{|v|/2}|v|! \binom{n+|v|-1}{n-1}^{n+2} \frac{1-|f(z)|^2}{(1-|z|^2)^{|v|}} (1+|z|)^{|v|-1} \quad (1.2)$$

holds for any $z \in \mathbb{B}_n$ and multi-index $v = (v_1, \dots, v_n) \neq 0$.

Received February 12, 2009. Revision received August 10, 2009.

Research supported by NSFC (China): 10171047, 10671093.