On the Divisibility of Fermat Quotients

Jean Bourgain, Kevin Ford, Sergei V. Konyagin, \& Igor E. Shparlinski

1. Introduction

For a prime p and an integer a the Fermat quotient is defined as

$$
q_{p}(a)=\frac{a^{p-1}-1}{p} .
$$

It is well known that divisibility of Fermat quotients $q_{p}(a)$ by p has numerous applications, which include Fermat's last theorem and squarefreeness testing; see [6; 7; 8; 16].
In particular, the smallest value ℓ_{p} of a for which $q_{p}(a) \not \equiv 0(\bmod p)$ plays a prominent role in these applications. In this direction, Lenstra [16, Thm. 3] has shown that

$$
\ell_{p} \leq \begin{cases}4(\log p)^{2} & \text { if } p \geq 3, \tag{1}\\ \left(4 e^{-2}+o(1)\right)(\log p)^{2} & \text { if } p \rightarrow \infty ;\end{cases}
$$

see also [7]. Granville [9, Thm. 5] has shown that in fact

$$
\begin{equation*}
\ell_{p} \leq(\log p)^{2} \tag{2}
\end{equation*}
$$

for $p \geq 5$.
A very different proof of a slightly weaker bound $\ell_{p} \leq(4+o(1))(\log p)^{2}$ has been obtained by Ihara [12] as a by-product of the estimate

$$
\begin{equation*}
\sum_{\substack{\ell^{k}<p \\ \ell \in \mathcal{W}(p)}} \frac{\log \ell}{\ell^{k}} \leq 2 \log \log p+2+o(1) \tag{3}
\end{equation*}
$$

as $p \rightarrow \infty$, where the summation is taken over all prime powers up to p of primes ℓ from the set

$$
\mathcal{W}(p)=\left\{\ell \text { prime }: \ell<p, q_{p}(\ell) \equiv 0(\bmod p)\right\} .
$$

However, the proof of (3) given in [12] is conditional on the extended Riemann hypothesis.

It has been conjectured by Granville [8, Conj. 10] that

$$
\begin{equation*}
\ell_{p}=o\left((\log p)^{1 / 4}\right) . \tag{4}
\end{equation*}
$$

[^0]
[^0]: Received December 22, 2008. Revision received August 14, 2009.

