Iterates of Vinogradov's Quadric and Prime Paucity

Valentin Blomer \& Jörg Brüdern

1. Introduction

Vinogradov's quadric is the variety defined by the pair of equations

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}, \quad x_{1}+x_{2}+x_{3}=y_{1}+y_{2}+y_{3}
$$

which is the special case $k=2$ of the more general system

$$
\begin{array}{ll}
x_{1,1}+x_{2,1}+x_{3,1}=x_{1, j}+x_{2, j}+x_{3, j} & (2 \leq j \leq k) \\
x_{1,1}^{2}+x_{2,1}^{2}+x_{3,1}^{2}=x_{1, j}^{2}+x_{2, j}^{2}+x_{3, j}^{2} & (2 \leq j \leq k) \tag{1}
\end{array}
$$

In this paper, we study the distribution of integral solutions to (1). Our first result concerns the number $V_{k}(N)$ of such solutions inside the sphere

$$
\begin{equation*}
x_{1, j}^{2}+x_{2, j}^{2}+x_{3, j}^{2} \leq 3 N^{2}, \quad 1 \leq j \leq k \tag{2}
\end{equation*}
$$

ThEOREM 1. Let $k \geq 2$ be a natural number. Then, for any real number δ with $0<\delta<3 / 2^{k}$,

$$
\begin{equation*}
V_{k}(N)=N^{3} P_{k}(\log N)+O\left(N^{3-\delta}\right) \tag{3}
\end{equation*}
$$

where P_{k} is a polynomial of degree $2^{k-1}-1$. In particular, $P_{2}(x)=48(x+c)$, where

$$
c=\gamma+\frac{1}{2} \log 2+\log 3-\frac{4}{3}+\frac{L^{\prime}(1, \chi)}{L(1, \chi)}-\frac{\zeta^{\prime}(2)}{\zeta(2)}
$$

and where χ is the nontrivial character modulo 3. Moreover,

$$
\begin{equation*}
V_{2}(N)=N^{3} P_{2}(\log N)+O\left(N^{2} \log N\right) \tag{4}
\end{equation*}
$$

The error term in (3) stems from the use of Weyl's bound for $\zeta(s)$ and $L(s, \chi)$ in the critical strip, and it can be improved by working with a truncated version of the Mellin integral (see equation (21) in Section 3) and with better bounds for $\zeta(s)$ and $L(s, \chi)$. When $k=2$, one can use fourth moments of these functions over the critical line to obtain (4). If the Lindelöf hypothesis were true for $\zeta(s)$ and $L(s, \chi)$, then for any $k \geq 3$ the formula (3) would hold for any $\delta<1$.

From the point of view of arithmetic geometry it is perhaps more natural to count solutions of (1) inside the box $\left|x_{i, j}\right| \leq N$. Let $\tilde{V}_{k}(N)$ denote the number

[^0]
[^0]: Received November 25, 2008. Revision received March 23, 2009.
 The first author was supported by an NSERC grant and a Sloan Research Fellowship.

