Holomorphic Motions, Fatou Linearization, and Quasiconformal Rigidity for Parabolic Germs

YUNPING JIANG

1. Introduction

One of the fundamental theorems in complex dynamical systems is a theorem called the Fatou linearization theorem. This theorem provides a topological and dynamical structure of a parabolic germ. A parabolic germ f is an analytic function defined in a neighborhood of a point z_0 in the complex plane \mathbb{C} such that (a) it fixes z_0 and (b) some power $(f'(z_0))^q$ of the derivative $f'(z_0)$ of f at z_0 is 1. Thus we can write f(z) in the following form:

$$f(z) = z_0 + \lambda(z - z_0) + a_2(z - z_0)^2 + \dots + a_n(z - z_0)^n + \dots, \quad z \in U,$$

where U is a neighborhood of z_0 and $\lambda = e^{2\pi pi/q}$ for p and q two relatively prime integers. The number λ is called the *multiplier* of f. Two parabolic germs f and g at two points z_0 and z_1 are said to be *topologically conjugate* if there is a homeomorphism h from a neighborhood of z_0 onto a neighborhood of z_1 such that

$$h \circ f = g \circ h.$$

If h is a K-quasiconformal homeomorphism, then we say that f and g are K-quasiconformally conjugate.

By a linear conjugacy $\phi(z) = z - z_0$, we may assume that $z_0 = 0$. So we only consider parabolic germs at 0,

$$f(z) = \lambda z + a_2 z^2 + \dots + a_n z^n + \dots, \quad z \in U.$$

Assume we are given a parabolic germ f at 0 whose multiplier $\lambda = e^{2\pi i p/q}$ with (p,q) = 1. Then

$$f^{q}(z) = z + az^{n+1} + o(z^{n+1}), \quad n \ge 1.$$

If $a \neq 0$, then n + 1 is called the *multiplicity* of f. Here n = kq is a multiplier of q. The Leau–Fatou flower theorem states that the local topological and dynamical picture of f around 0 can be described as follows. There are n petals pairwise tangential at 0 such that each petal is mapped into the (kp)th petal counting counterclockwise from this petal. These petals are called *attracting* petals. At

Received February 21, 2008. Revision received February 10, 2009.

The research is partially supported by PSC-CUNY awards.