L²-Betti Numbers of Plane Algebraic Curves

STEFAN FRIEDL, CONSTANCE LEIDY, & LAURENTIU MAXIM

1. Introduction

Let X be any topological space and let $\varphi : \pi_1(X) \to \Gamma$ be a homomorphism to a group (all groups are assumed to be countable). Then for $p \in \mathbb{N} \cup \{0\}$ we can consider the L^2 -Betti number $b_p^{(2)}(X, \varphi) \in [0, \infty]$. We recall the definition and some of the most important properties of L^2 -Betti numbers in Section 2.

Let $C \subset \mathbb{C}^2$ be a reduced plane algebraic curve with irreducible components C_1, \ldots, C_r . We write $X(C) := \mathbb{C}^2 \setminus vC$ for vC a regular neighborhood of C inside \mathbb{C}^2 . We denote the meridians about the nonsingular parts of C_1, \ldots, C_r by μ_1, \ldots, μ_r . Note that these meridians come with a preferred orientation because the nonsingular parts of the irreducible components C_i are complex submanifolds of \mathbb{C}^2 .

It is well known (cf. Theorem 3.1) that $H_1(X(\mathcal{C}); \mathbb{Z})$ is the free abelian group generated by the meridians μ_1, \ldots, μ_r . Throughout this paper we denote by ϕ the map $\pi_1(X(\mathcal{C}); \mathbb{Z}) \to \mathbb{Z}$ given by sending each meridian μ_i to 1. We also refer to ϕ as the total linking homomorphism. We henceforth call a homomorphism $\alpha : \pi_1(X(\mathcal{C})) \to \Gamma$ to a group *admissible* if the total linking homomorphism ϕ factors through α .

Our first result is the following.

THEOREM 1.1. Let $C \subset \mathbb{C}^2$ be a reduced algebraic curve C whose projective completion intersects the line at infinity transversely. Let $\alpha : \pi_1(X(C)) \to \Gamma$ be an admissible homomorphism. Then

$$b_p^{(2)}(X(\mathcal{C}),\alpha) = \begin{cases} 0 & \text{for } p \neq 2, \\ \chi(X(\mathcal{C})) & \text{for } p = 2. \end{cases}$$

In [DaJLe] it was shown that if \mathcal{A} is an affine hyperplane arrangement in \mathbb{C}^n then at most one of the L^2 -Betti numbers $b_p^{(2)}(\mathbb{C}^n \setminus \mathcal{A}, \mathrm{id})$ is nonzero. Theorem 1.1 can be seen as an analogous statement for the complement of an algebraic curve in \mathbb{C}^2 that is in general position at infinity. Note that if Γ is a polytorsion-free abelian (PTFA) group then this theorem, together with Proposition 2.4, recovers [LMa1, Cor. 4.2].

Received December 12, 2007. Revision received June 12, 2008.

S.F. was supported by a CRM-ISM Fellowship and by CIRGET. L.M. was supported by a PSC-CUNY Research Award.