L^{2}-Betti Numbers of Plane Algebraic Curves

Stefan Friedl, Constance Leidy, \& Laurentiu Maxim

1. Introduction

Let X be any topological space and let $\varphi: \pi_{1}(X) \rightarrow \Gamma$ be a homomorphism to a group (all groups are assumed to be countable). Then for $p \in \mathbb{N} \cup\{0\}$ we can consider the L^{2}-Betti number $b_{p}^{(2)}(X, \varphi) \in[0, \infty]$. We recall the definition and some of the most important properties of L^{2}-Betti numbers in Section 2.

Let $\mathcal{C} \subset \mathbb{C}^{2}$ be a reduced plane algebraic curve with irreducible components $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$. We write $X(\mathcal{C}):=\mathbb{C}^{2} \backslash \nu \mathcal{C}$ for $\nu \mathcal{C}$ a regular neighborhood of \mathcal{C} inside \mathbb{C}^{2}. We denote the meridians about the nonsingular parts of $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ by μ_{1}, \ldots, μ_{r}. Note that these meridians come with a preferred orientation because the nonsingular parts of the irreducible components \mathcal{C}_{i} are complex submanifolds of \mathbb{C}^{2}.

It is well known (cf. Theorem 3.1) that $H_{1}(X(\mathcal{C}) ; \mathbb{Z})$ is the free abelian group generated by the meridians μ_{1}, \ldots, μ_{r}. Throughout this paper we denote by ϕ the map $\pi_{1}(X(\mathcal{C}) ; \mathbb{Z}) \rightarrow \mathbb{Z}$ given by sending each meridian μ_{i} to 1 . We also refer to ϕ as the total linking homomorphism. We henceforth call a homomorphism $\alpha: \pi_{1}(X(\mathcal{C})) \rightarrow \Gamma$ to a group admissible if the total linking homomorphism ϕ factors through α.

Our first result is the following.
Theorem 1.1. Let $\mathcal{C} \subset \mathbb{C}^{2}$ be a reduced algebraic curve \mathcal{C} whose projective completion intersects the line at infinity transversely. Let $\alpha: \pi_{1}(X(\mathcal{C})) \rightarrow \Gamma$ be an admissible homomorphism. Then

$$
b_{p}^{(2)}(X(\mathcal{C}), \alpha)= \begin{cases}0 & \text { for } p \neq 2 \\ \chi(X(\mathcal{C})) & \text { for } p=2\end{cases}
$$

In [DaJLe] it was shown that if \mathcal{A} is an affine hyperplane arrangement in \mathbb{C}^{n} then at most one of the L^{2}-Betti numbers $b_{p}^{(2)}\left(\mathbb{C}^{n} \backslash \mathcal{A}\right.$, id) is nonzero. Theorem 1.1 can be seen as an analogous statement for the complement of an algebraic curve in \mathbb{C}^{2} that is in general position at infinity. Note that if Γ is a polytorsion-free abelian (PTFA) group then this theorem, together with Proposition 2.4, recovers [LMa1, Cor. 4.2].

[^0]
[^0]: Received December 12, 2007. Revision received June 12, 2008.
 S.F. was supported by a CRM-ISM Fellowship and by CIRGET. L.M. was supported by a PSC-CUNY Research Award.

