Distance-Regular Graphs of *q*-Racah Type and the *q*-Tetrahedron Algebra

TATSURO ITO & PAUL TERWILLIGER

In memory of Donald Higman

1. Introduction

In [20], Hartwig and the second author gave a presentation of the three-point \mathfrak{sl}_2 loop algebra via generators and relations. To obtain this presentation they defined a Lie algebra \boxtimes by generators and relations and then displayed an isomorphism from \boxtimes to the three-point \mathfrak{sl}_2 loop algebra. The algebra \boxtimes is called the *tetrahedron* algebra [20, Def. 1.1]. In [24] we introduced a q-deformation \boxtimes_q of \boxtimes called the q-tetrahedron algebra. In [24] and [25] we described the finite-dimensional irreducible \boxtimes_q -modules. In [26, Sec. 4] we displayed four homomorphisms into \boxtimes_q from the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$. In [26, Sec. 12] we found a homomorphism from \boxtimes_q into the subconstituent algebra of a distance-regular graph that is self-dual with classical parameters. In this paper we do something similar for a distance-regular graph that is said to have q-Racah type. This type is described as follows. Let Γ denote a distance-regular graph with diameter $D \geq 3$ (See Section 4 for formal definitions). We say that Γ has q-Racah type whenever Γ has a Q-polynomial structure with eigenvalue sequence $\{\theta_i\}_{i=0}^D$ and dual eigenvalue sequence $\{\theta_i^*\}_{i=0}^D$ that satisfy, for $0 \leq i \leq D$,

$$\theta_i = \eta + uq^{2i-D} + vq^{D-2i}$$
 and
 $\theta_i^* = \eta^* + u^*q^{2i-D} + v^*q^{D-2i},$

where q, u, v, u^*, v^* are nonzero and $q^{2i} \neq 1$ for $1 \leq i \leq D$. Assume that Γ has q-Racah type.

Fix a vertex x of Γ and let T = T(x) denote the corresponding subconstituent algebra [32, Def. 3.3]. Recall that T is generated by the adjacency matrix A and the dual adjacency matrix $A^* = A^*(x)$ [32, Def. 3.10]. An irreducible T-module W is called *thin* whenever the intersection of W with each eigenspace of A and each eigenspace of A^* has dimension at most 1 [32, Def. 3.5]. Assuming that each irreducible T-module is thin, we display invertible central elements Φ and Ψ of T and a homomorphism $\vartheta : \boxtimes_a \to T$ such that

$$A = \eta I + u \Phi \Psi^{-1} \vartheta(x_{01}) + v \Psi \Phi^{-1} \vartheta(x_{12}) \quad \text{and}$$
$$A^* = \eta^* I + u^* \Phi \Psi \vartheta(x_{23}) + v^* \Psi^{-1} \Phi^{-1} \vartheta(x_{30}),$$

Received August 17, 2007. Revision received March 6, 2008.

The first author was supported in part by JSPS grant 18340022.