Distance-Regular Graphs of q-Racah Type and the q-Tetrahedron Algebra

Tatsuro Ito \& Paul Terwilliger
In memory of Donald Higman

1. Introduction

In [20], Hartwig and the second author gave a presentation of the three-point $\mathfrak{s l}_{2}$ loop algebra via generators and relations. To obtain this presentation they defined a Lie algebra \boxtimes by generators and relations and then displayed an isomorphism from \boxtimes to the three-point $\mathfrak{s l}_{2}$ loop algebra. The algebra \boxtimes is called the tetrahedron algebra [20, Def. 1.1]. In [24] we introduced a q-deformation \boxtimes_{q} of \boxtimes called the q-tetrahedron algebra. In [24] and [25] we described the finite-dimensional irreducible \boxtimes_{q}-modules. In [26, Sec. 4] we displayed four homomorphisms into \boxtimes_{q} from the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$. In [26, Sec. 12] we found a homomorphism from \boxtimes_{q} into the subconstituent algebra of a distance-regular graph that is self-dual with classical parameters. In this paper we do something similar for a distance-regular graph that is said to have q-Racah type. This type is described as follows. Let Γ denote a distance-regular graph with diameter $D \geq 3$ (See Section 4 for formal definitions). We say that Γ has q-Racah type whenever Γ has a Q-polynomial structure with eigenvalue sequence $\left\{\theta_{i}\right\}_{i=0}^{D}$ and dual eigenvalue sequence $\left\{\theta_{i}^{*}\right\}_{i=0}^{D}$ that satisfy, for $0 \leq i \leq D$,

$$
\begin{aligned}
\theta_{i} & =\eta+u q^{2 i-D}+v q^{D-2 i} \quad \text { and } \\
\theta_{i}^{*} & =\eta^{*}+u^{*} q^{2 i-D}+v^{*} q^{D-2 i},
\end{aligned}
$$

where q, u, v, u^{*}, v^{*} are nonzero and $q^{2 i} \neq 1$ for $1 \leq i \leq D$. Assume that Γ has q-Racah type.

Fix a vertex x of Γ and let $T=T(x)$ denote the corresponding subconstituent algebra [32, Def. 3.3]. Recall that T is generated by the adjacency matrix A and the dual adjacency matrix $A^{*}=A^{*}(x)$ [32, Def. 3.10]. An irreducible T-module W is called thin whenever the intersection of W with each eigenspace of A and each eigenspace of A^{*} has dimension at most 1 [32, Def. 3.5]. Assuming that each irreducible T-module is thin, we display invertible central elements Φ and Ψ of T and a homomorphism $\vartheta: \boxtimes_{q} \rightarrow T$ such that

$$
\begin{aligned}
A & =\eta I+u \Phi \Psi^{-1} \vartheta\left(x_{01}\right)+v \Psi \Phi^{-1} \vartheta\left(x_{12}\right) \quad \text { and } \\
A^{*} & =\eta^{*} I+u^{*} \Phi \Psi \vartheta\left(x_{23}\right)+v^{*} \Psi^{-1} \Phi^{-1} \vartheta\left(x_{30}\right),
\end{aligned}
$$

[^0]
[^0]: Received August 17, 2007. Revision received March 6, 2008. The first author was supported in part by JSPS grant 18340022.

