Points and Hyperplanes of the Universal Embedding Space of the Dual Polar Space $D W(5, q), q$ Odd

B. N. Cooperstein \& B. De Bruyn

Dedicated to the memory of Donald G. Higman

1. Introduction

A partial linear rank-2 incidence geometry, also called a point-line geometry, is a pair $\Gamma=(\mathcal{P}, \mathcal{L})$ consisting of a set \mathcal{P} whose elements are called points and a collection \mathcal{L} of distinguished subsets of \mathcal{P} whose elements are called lines, such that any two distinct points are contained in at most one line. The point-collinearity graph of Γ is the graph with vertex set \mathcal{P} where two points are adjacent if they are collinear (i.e., lie on a common line). By a subspace of Γ we mean a subset S of \mathcal{P} such that, if $l \in \mathcal{L}$ and $l \cap S$ contains at least two points, then $l \subset S$. A subspace S is singular if each pair of points in S is collinear-that is, if S is a clique in the collinearity graph of Γ. We say that (\mathcal{P}, \mathcal{L}) is a Gamma space (see [13]) if, for every $x \in \mathcal{P},\{x\} \cup \Gamma(x)$ is a subspace. A subspace $S \neq \mathcal{P}$ is a geometric hyperplane if it meets every line.

Let e be a positive integer, p a prime, and V a 6-dimensional vector space over the finite field $\mathbb{F}_{q}, q=p^{e}$, equipped with a nondegenerate alternating form f. Then every vector $\bar{u} \in V$ is isotropic, that is, satisfies $f(\bar{u}, \bar{u})=0$. A subspace U of V is called totally isotropic (with respect to f) if $f\left(\bar{u}_{1}, \bar{u}_{2}\right)=0$ for all $\bar{u}_{1}, \bar{u}_{2} \in U$.

Associated with (V, f) is a polar space denoted by $W(5, q)$. Here, by a polar space we mean a point-line geometry (P, L) that satisfies the following properties:

1. (P, L) is a Gamma space and, for every point p and line l, p is collinear with some point of l (this means that p is collinear with one point or all points of l);
2. no point p is collinear with every other point; and
3. there is an integer n called the rank of (P, L) such that, if $S_{0} \subset S_{1} \subset \cdots \subset S_{k}$ is a properly ascending chain of singular subspaces, then $k \leq n$.
When $n=2,(P, L)$ is said to be a generalized quadrangle.
The points (resp. lines) of $W(5, q)$ are the 1-dimensional (resp. 2-dimensional) subspaces of V that are totally isotropic with respect to f and where incidence is containment. In $W(5, q)$, two points $\left\langle\bar{u}_{1}\right\rangle_{V}$ and $\left\langle\bar{u}_{2}\right\rangle_{V}$ are collinear if and only if $f\left(\bar{u}_{1}, \bar{u}_{2}\right)=0$ (i.e., iff \bar{u}_{1} and \bar{u}_{2} are orthogonal).
[^0]
[^0]: Received April 17, 2007. Revision received June 13, 2008.
 The research of the second author is supported by a grant of the Fund for Scientific Research - Flanders (Belgium).

