Points and Hyperplanes of the Universal Embedding Space of the Dual Polar Space DW(5, q), q Odd

B. N. Cooperstein & B. De Bruyn

Dedicated to the memory of Donald G. Higman

1. Introduction

A partial linear rank-2 incidence geometry, also called a point-line geometry, is a pair $\Gamma = (\mathcal{P}, \mathcal{L})$ consisting of a set \mathcal{P} whose elements are called points and a collection \mathcal{L} of distinguished subsets of \mathcal{P} whose elements are called lines, such that any two distinct points are contained in at most one line. The point-collinearity graph of Γ is the graph with vertex set \mathcal{P} where two points are adjacent if they are collinear (i.e., lie on a common line). By a subspace of Γ we mean a subset S of \mathcal{P} such that, if $I \in \mathcal{L}$ and $I \cap S$ contains at least two points, then $I \subset S$. A subspace S is singular if each pair of points in S is collinear—that is, if S is a clique in the collinearity graph of Γ . We say that $(\mathcal{P}, \mathcal{L})$ is a Gamma space (see [13]) if, for every $x \in \mathcal{P}$, $\{x\} \cup \Gamma(x)$ is a subspace. A subspace $S \neq \mathcal{P}$ is a geometric hyperplane if it meets every line.

Let e be a positive integer, p a prime, and V a 6-dimensional vector space over the finite field \mathbb{F}_q , $q = p^e$, equipped with a nondegenerate alternating form f. Then every vector $\bar{u} \in V$ is *isotropic*, that is, satisfies $f(\bar{u}, \bar{u}) = 0$. A subspace U of V is called *totally isotropic* (with respect to f) if $f(\bar{u}_1, \bar{u}_2) = 0$ for all $\bar{u}_1, \bar{u}_2 \in U$.

Associated with (V, f) is a polar space denoted by W(5, q). Here, by a *polar space* we mean a point-line geometry (P, L) that satisfies the following properties:

- 1. (P, L) is a Gamma space and, for every point p and line l, p is collinear with some point of l (this means that p is collinear with one point or all points of l);
- 2. no point p is collinear with every other point; and
- 3. there is an integer n called the rank of (P, L) such that, if $S_0 \subset S_1 \subset \cdots \subset S_k$ is a properly ascending chain of singular subspaces, then $k \leq n$.

When n = 2, (P, L) is said to be a *generalized quadrangle*.

The points (resp. lines) of W(5,q) are the 1-dimensional (resp. 2-dimensional) subspaces of V that are totally isotropic with respect to f and where incidence is containment. In W(5,q), two points $\langle \bar{u}_1 \rangle_V$ and $\langle \bar{u}_2 \rangle_V$ are collinear if and only if $f(\bar{u}_1,\bar{u}_2)=0$ (i.e., iff \bar{u}_1 and \bar{u}_2 are orthogonal).

Received April 17, 2007. Revision received June 13, 2008.

The research of the second author is supported by a grant of the Fund for Scientific Research – Flanders (Belgium).