Sobolev Peano Cubes

PIOTR HAJŁASZ & JEREMY T. TYSON

In memoriam: Juha M. Heinonen (1960-2007)

1. Introduction

A classical theorem of Hahn [8] and Mazurkiewicz [19] states that X is a locally connected continuum if and only if there exists a continuous surjection $f : [0, 1] \rightarrow X$. Since any cube $[0, 1]^n$ is a continuous image of [0, 1], an equivalent statement is: X is a locally connected continuum if and only if there exists a continuous surjection $f : [0, 1]^n \rightarrow X$.

The purpose of this paper is to generalize the Hahn–Mazurkiewicz theorem to differentiable and weakly differentiable mappings. Not surprisingly, our assumptions on *X* will be stronger.

Following Kirchheim [15], we say that a map $f: \Omega \to X$ from an open set $\Omega \subset \mathbb{R}^n$ to a metric space X is *metrically differentiable* at $x \in \Omega$ if there is a seminorm $\|\cdot\|_x$ on \mathbb{R}^n such that

$$d(f(x), f(y)) - \|y - x\|_x = o(|y - x|) \quad \text{for } y \in \Omega.$$
(1.1)

The seminorm assumption means that $||a + b||_x \le ||a||_x + ||b||_x$ and $||ta||_x = |t||a||_x$ but $||\cdot||_x$ can vanish on a linear subspace on \mathbb{R}^n , and (1.1) means that

$$\lim_{y \to x} \frac{d(f(x), f(y)) - \|y - x\|_x}{|y - x|} = 0.$$

Clearly, if $f: \Omega \to \mathbb{R}^k$ is (classically) differentiable at $x \in \Omega$, then it is metrically differentiable with $||u||_x = |Df(x)(u)|$. It is also easy to see that $f: (a, b) \to X$ is metrically differentiable at $x \in (a, b)$ if and only if the limit

$$\lim_{h \to 0} \frac{d(f(x+h), f(x))}{|h|}$$

exists and is finite.

A classical theorem of Rademacher [6] says that Lipschitz continuous functions $f: \Omega \to \mathbb{R}^k$ are differentiable a.e. Kirchheim [15] generalized this theorem to the case of metric space-valued mappings as follows.

THEOREM 1.1 (Kirchheim). A Lipschitz continuous map $f: \Omega \to X$ from an open set $\Omega \subset \mathbb{R}^n$ to a metric space X is metrically differentiable a.e.

Received November 19, 2007. Revision received February 4, 2008.

P.H. supported by NSF grant DMS 0500966. J.T.T. supported by NSF grant DMS 0555869.