A Minimal Brieskorn 5-Sphere in the Gromoll–Meyer Sphere and Its Applications

CARLOS DURÁN & THOMAS PÜTTMANN

1. Introduction

This paper links two previously more or less unrelated important examples at the intersection of the fields of transformation groups, exotic spheres, and non-negative curvature. These two examples are the exotic Gromoll–Meyer sphere Σ^7 and the Brieskorn sphere W_3^5 . Several applications are drawn from the interplay between the Riemannian geometry of a 2-parameter family of metrics on Σ^7 and the equivariant geometry of W_3^5 , which, surprisingly, determines the equivariant geometry of Σ^7 much more than the equivariant geometry of the exotic Brieskorn spheres $W_{6j-1,3}^7$, although the latter contain W_3^5 in a much more obvious way.

In 1974, Gromoll and Meyer [GrMy] constructed Σ^7 as a biquotient of the compact group Sp(2) and thereby the first exotic sphere with nonnegative sectional curvature. Note that Σ^7 can be regarded as the basic example of a biquotient in Riemannian geometry and, simultaneously, as the basic example of an exotic sphere. It generates the group $\Theta_7 \approx \mathbb{Z}_{28}$ of homotopy spheres in dimension 7, the first dimension except possibly 4 where exotic spheres can occur. Recently, it was shown that Σ^7 is actually the only exotic sphere that can be modeled by a biquotient of a compact Lie group [KaZ; To].

Because of this exceptional status of the Gromoll–Meyer sphere, it seems natural to study the geometry of Σ^7 in detail. Papers that do this from various viewpoints are [D; EK; PaSp; Y; Wi], for example. Here we investigate Σ^7 through the interaction between symmetry arguments, submanifold stratifications, and geodesic constructions. It is important, however, to note that we consider not only the Gromoll–Meyer metric on Σ^7 but also the entire 2-parameter family of metrics $\langle \cdot, \cdot \rangle_{\mu,\nu}$ that are O(2) × SO(3) invariant by construction. This family includes the Gromoll–Meyer metric ($\mu = \nu = \frac{1}{2}$) and the pointed wiederschen metric constructed in [D] ($\mu = \nu = 1$) but not the metrics of almost positive sectional curvature obtained in [EK] and [Wi]. Extending the constructions of [D] and [ADPR], we obtain the following structural information.

Received June 20, 2007. Revision received December 19, 2007.

The first author was supported by FAPESP grant 03/016789 and FAEPEX grant 15406. The second author was supported by a DFG Heisenberg fellowship and by the DFG priority program SPP 1154

[&]quot;Globale Differentialgeometrie".