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Introduction

Let D be the unit disc of the complex plane. Given a real number β, let

dAβ(z) = (1 + β)(1 − |z|2)β dA(z),

where dA is the normalized area measure on D. For β > −1 and 0 < p < ∞, the
Bergman space A

p

β consists of all analytic functions in Lp(dAβ) := Lp(D, dAβ)

with norm

‖f ‖p

Ap
β

=
∫

D

|f(z)|p dAβ(z).

For 1 < p < ∞ and α ≤ 1/2, let Bp(α) be the Besov-type space of those analytic
functions on the unit disc D for which

‖f ‖p
α,p = |f(0)|p +

∫
D

|f ′(z)|p dAp,α(z) < ∞,

where
dAp,α(z) = (1 − |z|2)p−2+1−2α dA(z).

The space L
p
α is the space of smooth functions u : D → C for which

‖u‖p
α,p = |u(0)|p +

∫
D

|∇u(z)|p dAp,α(z)

is finite. It is clear that Bp(α) is the subspace of all analytic functions in L
p
α. Note

that the dual space of Bp(α) is isomorphic to Bq(α), where q is the conjugate ex-
ponent of p, under the pairing

〈f , g〉α = f(0)g(0) +
∫

D

f ′(z)g ′(z)(1 − |z|2)1−2α dA(z),

defined for f ∈ Bp(α) and g ∈ Bq(α). Note that, by Hölder’s inequality, if f ∈
Bp(α) then f ′ ∈A1

1−2α. So, using the reproducing formula for the Bergman space
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