The Direct Sum Decomposability of ^eM in Dimension 2

Yongwei Yao

Dedicated to Professor Melvin Hochster on the occasion of his sixty-fifth birthday

0. Introduction

Unless explicitly stated otherwise, throughout this paper we assume that R is a Noetherian ring of prime characteristic p and that M is a finitely generated R-module. By (R, m, k) we indicate that R is local with its maximal ideal m and its residue field k = R/m. We always denote $q := p^e$ for varying $e \in \mathbb{N}$.

For every $e \in \mathbb{N}$, there exists a Frobenius map (which is a ring homomorphism) $F^e \colon R \to R$ defined by $F^e(r) = r^q = r^{p^e}$ for any $r \in R$. Thus, given M, there is a derived R-module structure, denoted by eM , on the same abelian group M but with its scalar multiplication determined by $r \cdot x = r^q x = r^{p^e} x$ for $r \in R$ and $x \in M$. It is routine to verify that $\operatorname{Ann}(M) \subseteq \operatorname{Ann}({}^eM) \subseteq \sqrt{\operatorname{Ann}(M)}$ and that $\operatorname{Ass}(M) = \operatorname{Ass}({}^eM)$ for all $e \in \mathbb{N}$.

When *R* is reduced it is clear that ${}^{e}R$ and $R^{1/q} := \{r^{1/p^{e}} | r \in R\}$ are isomorphic as *R*-modules for every *e*. Using this terminology, a result of Kunz [K1, Thm. 2.1] states that *R* is regular if and only if ${}^{e}R$ is flat over *R* for some $e \ge 1$ or, equivalently, for all $e \in \mathbb{N}$.

We say that *R* is *F*-finite if ¹*R* is finitely generated over *R* or, equivalently, if ^{*e*}*R* is finitely generated over *R* for all $e \in \mathbb{N}$. By a result of Kunz [K2], every *F*-finite ring is excellent. If *R* is *F*-finite and if *M* is a finitely generated *R*-module, then it is easy to see that ^{*e*}*M* remains finitely generated over *R* for every $e \in \mathbb{N}$.

Similarly, if ¹*M* is finitely generated over *R* then so is ¹(*R*/Ann(*M*)). This means that *R*/Ann(*M*) is an *F*-finite ring. In other words, ${}^{e}(R/Ann(M))$ is finite over *R*/Ann(*M*) (or, equivalently, over *R*) for all *e*, which forces ${}^{e}M$ to be finitely generated over *R* for all $e \in \mathbb{N}$.

For any $e \in \mathbb{N}$, the derived *R*-module ${}^{e}M$ can be roughly identified as the module structure of *M* over the subring $R^{q} := \{r^{q} = r^{p^{e}} \mid r \in R\}$. Thus, in general, the "size" of ${}^{e}M$ should increase as $e \to \infty$. Assuming that ${}^{e}M$ is finite over *R* for all $e \in \mathbb{N}$, we are interested in whether it is possible for the derived *R*-modules ${}^{e}M$ to remain indecomposable (i.e., not writable as a direct sum of two nontrivial sub-modules) for all $e \in \mathbb{N}$. Since we can always replace *R* by *R*/Ann(*M*), we may simply assume that *R* is *F*-finite.

Received July 5, 2007. Revision received September 10, 2007.

The author was partially supported by the National Science Foundation (DMS-0700554) and by the Research Initiation Grant of Georgia State University.