Toric Geometry of Cuts and Splits

BERND STURMFELS & SETH SULLIVANT

1. Introduction

With any finite graph G = (V, E) we associate a projective toric variety X_G over a field \mathbb{K} as follows. The coordinates $q_{A|B}$ of the ambient projective space are indexed by unordered partitions A|B of the vertex set V. The dense torus has two coordinates (s_{ij}, t_{ij}) for each edge $\{i, j\} \in E$. The polynomial rings in these two sets of unknowns are

$$\mathbb{K}[q] := \mathbb{K}[q_{A|B} \mid A \cup B = V, A \cap B = \emptyset],$$
$$\mathbb{K}[s,t] := \mathbb{K}[s_{ij}, t_{ij} \mid \{i, j\} \in E].$$

Each partition A | B of the vertex set V defines a subset Cut(A | B) of the edge set E. Namely, Cut(A | B) is the set of edges $\{i, j\}$ such that $i \in A, j \in B$ or $i \in B$, $j \in A$. The variety we wish to study is specified by the following homomorphism of polynomial rings:

$$\phi_G \colon \mathbb{K}[q] \to \mathbb{K}[s,t], \qquad q_{A|B} \mapsto \prod_{\{i,j\} \in \operatorname{Cut}(A|B)} s_{ij} \cdot \prod_{\{i,j\} \in E \setminus \operatorname{Cut}(A|B)} t_{ij}. \tag{1.1}$$

One may wish to think of *s* and *t* as abbreviations for "separated" and "together". The kernel of ϕ_G is a homogeneous toric ideal I_G , which we call the *cut ideal* of the graph *G*. We are interested in the projective toric variety X_G that is defined by the cut ideal I_G .

EXAMPLE 1.1. Let $G = K_4$ be the complete graph on four nodes, so $V = \{1, 2, 3, 4\}$ and $E = \{12, 13, 14, 23, 24, 34\}$. The ring map ϕ_{K_4} is specified by

$q_{ 1234} \mapsto t_{12}t_{13}t_{14}t_{23}t_{24}t_{34},$	$q_{1 234} \mapsto s_{12}s_{13}s_{14}t_{23}t_{24}t_{34},$
$q_{12 34} \mapsto t_{12}s_{13}s_{14}s_{23}s_{24}t_{34},$	$q_{2 134} \mapsto s_{12}t_{13}t_{14}s_{23}s_{24}t_{34},$
$q_{13 24} \mapsto s_{12}t_{13}s_{14}s_{23}t_{24}s_{34},$	$q_{3 124} \mapsto t_{12}s_{13}t_{14}s_{23}t_{24}s_{34},$
$q_{14 23} \mapsto s_{12}s_{13}t_{14}t_{23}s_{24}s_{34},$	$q_{4 123} \mapsto t_{12}t_{13}s_{14}t_{23}s_{24}s_{34}.$

The cut ideal for the complete graph on four nodes is the principal ideal

$$I_{K_4} = \langle q_{|1234} q_{12|34} q_{13|24} q_{14|23} - q_{1|234} q_{2|134} q_{3|124} q_{123|4} \rangle.$$

Thus the toric variety X_{K_4} defined by I_{K_4} is a quartic hypersurface in \mathbb{P}^7 .

Received July 3, 2006. Revision received February 12, 2007.

B. Sturmfels was partially supported by the National Science Foundation (DMS-0456960).