Toric Geometry of Cuts and Splits

Bernd Sturmfels \& Seth Sullivant

1. Introduction

With any finite graph $G=(V, E)$ we associate a projective toric variety X_{G} over a field \mathbb{K} as follows. The coordinates $q_{A \mid B}$ of the ambient projective space are indexed by unordered partitions $A \mid B$ of the vertex set V. The dense torus has two coordinates $\left(s_{i j}, t_{i j}\right)$ for each edge $\{i, j\} \in E$. The polynomial rings in these two sets of unknowns are

$$
\begin{aligned}
\mathbb{K}[q] & :=\mathbb{K}\left[q_{A \mid B} \mid A \cup B=V, A \cap B=\emptyset\right], \\
\mathbb{K}[s, t] & :=\mathbb{K}\left[s_{i j}, t_{i j} \mid\{i, j\} \in E\right] .
\end{aligned}
$$

Each partition $A \mid B$ of the vertex set V defines a subset $\operatorname{Cut}(A \mid B)$ of the edge set E. Namely, $\operatorname{Cut}(A \mid B)$ is the set of edges $\{i, j\}$ such that $i \in A, j \in B$ or $i \in B$, $j \in A$. The variety we wish to study is specified by the following homomorphism of polynomial rings:

$$
\begin{equation*}
\phi_{G}: \mathbb{K}[q] \rightarrow \mathbb{K}[s, t], \quad q_{A \mid B} \mapsto \prod_{\{i, j\} \in \operatorname{Cut}(A \mid B)} s_{i j} \cdot \prod_{\{i, j\} \in E \backslash \operatorname{Cut}(A \mid B)} t_{i j} \tag{1.1}
\end{equation*}
$$

One may wish to think of s and t as abbreviations for "separated" and "together". The kernel of ϕ_{G} is a homogeneous toric ideal I_{G}, which we call the cut ideal of the graph G. We are interested in the projective toric variety X_{G} that is defined by the cut ideal I_{G}.

Example 1.1. Let $G=K_{4}$ be the complete graph on four nodes, so $V=$ $\{1,2,3,4\}$ and $E=\{12,13,14,23,24,34\}$. The ring map $\phi_{K_{4}}$ is specified by

$$
\begin{array}{lll}
q_{\mid 1234} \mapsto t_{12} t_{13} t_{14} t_{23} t_{24} t_{34}, & q_{1 \mid 234} \mapsto s_{12} s_{13} s_{14} t_{23} t_{24} t_{34}, \\
q_{12 \mid 34} \mapsto t_{12} s_{13} s_{14} s_{23} s_{24} t_{34}, & q_{2 \mid 134} \mapsto s_{12} t_{13} t_{14} s_{23} s_{24} t_{34}, \\
q_{13 \mid 24} \mapsto s_{12} t_{13} s_{14} s_{23} t_{24} s_{34}, & q_{3 \mid 124} \mapsto t_{12} s_{13} t_{14} s_{23} t_{24} s_{34}, \\
q_{14 \mid 23} \mapsto s_{12} s_{13} t_{14} t_{23} s_{24} s_{34}, & q_{4 \mid 123} \mapsto t_{12} t_{13} s_{14} t_{23} s_{24} s_{34} .
\end{array}
$$

The cut ideal for the complete graph on four nodes is the principal ideal

$$
I_{K_{4}}=\left\langle q_{\mid 1234} q_{12 \mid 34} q_{13 \mid 24} q_{14 \mid 23}-q_{1 \mid 234} q_{2 \mid 134} q_{3 \mid 124} q_{123 \mid 4}\right\rangle
$$

Thus the toric variety $X_{K_{4}}$ defined by $I_{K_{4}}$ is a quartic hypersurface in \mathbb{P}^{7}.

[^0]
[^0]: Received July 3, 2006. Revision received February 12, 2007.
 B. Sturmfels was partially supported by the National Science Foundation (DMS-0456960).

