Longest Alternating Subsequences of Permutations

Richard P. Stanley
Dedicated to Mel Hochster on the occasion of his sixty-fifth birthday

1. Introduction

Let \mathfrak{S}_{n} denote the symmetric group of permutations of $1,2, \ldots, n$, and let $w=$ $w_{1} \cdots w_{n} \in \mathfrak{S}_{n}$. An increasing subsequence of w of length k is a subsequence $w_{i_{1}} \cdots w_{i_{k}}$ satisfying

$$
w_{i_{1}}<w_{i_{2}}<\cdots<w_{i_{k}} .
$$

There has been much recent work on the length is ${ }_{n}(w)$ of the longest increasing subsequence of a permutation $w \in \mathfrak{S}_{n}$. A highlight is the asymptotic determination of the expectation $E(n)$ of is ${ }_{n}$ by Logan-Shepp [11] and Vershik-Kerov [18]:

$$
\begin{equation*}
E(n):=\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \operatorname{is}_{n}(w) \sim 2 \sqrt{n}, \quad n \rightarrow \infty \tag{1}
\end{equation*}
$$

Baik, Deift, and Johansson [3] obtained a vast strengthening of this resultnamely, the limiting distribution of is $_{n}(w)$ as $n \rightarrow \infty$. In particular, for w chosen uniformly from \mathfrak{S}_{n},

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\frac{\mathrm{is}_{n}(w)-2 \sqrt{n}}{n^{1 / 6}} \leq t\right)=F(t) \tag{2}
\end{equation*}
$$

where $F(t)$ is the Tracy-Widom distribution. The proof uses a result of Gessel [9] that gives a generating function for the quantity

$$
u_{k}(n)=\#\left\{w \in \mathfrak{S}_{n}: \text { is }(w) \leq k\right\}
$$

Namely, define

$$
\begin{aligned}
U_{k}(x) & =\sum_{n \geq 0} u_{k}(n) \frac{x^{2 n}}{n!^{2}}, \quad k \geq 1 \\
I_{i}(2 x) & =\sum_{n \geq 0} \frac{x^{2 n+i}}{n!(n+i)!}, \quad i \in \mathbb{Z}
\end{aligned}
$$

The function I_{i} is the hyperbolic Bessel function of the first kind of order i. Note that $I_{i}(2 x)=I_{-i}(2 x)$. Gessel then showed that

$$
U_{k}(x)=\operatorname{det}\left(I_{i-j}(2 x)\right)_{i, j=1}^{k}
$$

[^0]
[^0]: Received December 22, 2006. Revision received August 16, 2007.
 Based upon work supported by National Science Foundation Grant nos. 9988459 and 0604423.

