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1. Introduction

Throughout the paper, k will denote a fixed algebraically closed field of character-
istic 0 and, unless otherwise specified, all rings will be k-algebras. Our aim is to
show that the center of a homologically homogeneous, finitely generated k-algebra
has rational singularities; in particular, if a finitely generated normal commutative
k-algebra has a noncommutative crepant resolution (as introduced by the second
author), then it has rational singularities.

We begin by setting this result in context and defining the relevant terms. Sup-
pose that X = SpecR for an affine (i.e., finitely generated) normal Gorenstein
k-algebra R. The nicest form of resolution of singularities f : Y → X occurs
when f is crepant in the sense that f ∗ωX = ωY . Even when they exist, crepant
resolutions need not be unique, but they are related—indeed, Bondal and Orlov
conjectured in [BoO2] (see also [BoO1]) that two such resolutions should be de-
rived equivalent.

Bridgeland [Bri] proved the Bondal–Orlov conjecture in dimension 3. The sec-
ond author observed in [V3] that Bridgeland’s proof could be explained in terms
of a third crepant resolution of X that is now noncommutative (the definition will
be given in what follows). This and similar observations by others have led to a
number of different approaches to the Bondal–Orlov conjecture and related topics
(see e.g. [Be; BeKa; Ch; IR; Ka2; Kaw]).

It is therefore natural to ask how the existence of a noncommutative crepant res-
olution affects the original commutative singularity. It is well known, and follows
easily from [KoMo, Thm. 5.10], that if a Gorenstein singularity has a crepant res-
olution then it has rational singularities. So it is logical to ask, as raised in [V2,
Ques. 3.2], is this true for a noncommutative crepant resolution? Here we answer
this question affirmatively.

Let � be a prime affine k-algebra that is finitely generated as a module over its
center Z(�). Mimicking [BH], we say that � is homologically homogeneous of
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