Rationality of Hilbert-Kunz Multiplicities: A Likely Counterexample

Paul Monsky

1. A Conjecture

At a 2004 Banff workshop, I gave a talk to demonstrate that, in many cases of interest, the Hilbert-Kunz multiplicity of a hypersurface is a rational number. (Mel Hochster, in the audience, told me a curious general fact: the set of possible Hilbert-Kunz multiplicities is countable.)

At the time I suspected that Hilbert-Kunz multiplicities must be rational. But soon after the workshop I found reason to change my opinion, and in this paper I suggest that a certain hypersurface defined by a 5 -variable polynomial has $\frac{4}{3}+\frac{5}{14 \sqrt{7}}$ as its Hilbert-Kunz multiplicity.

Throughout, q will denote a power 2^{n} of 2 with $n \geq 0$, and H will be the element $x^{3}+y^{3}+x y z$ of $\mathbb{Z} / 2[x, y, z] ; e_{n}\left(H^{j}\right)$ is the colength, $\operatorname{deg}\left(x^{q}, y^{q}, z^{q}, H^{j}\right)$, of the ideal $\left(x^{q}, y^{q}, z^{q}, H^{j}\right)$. It is known [1, Thm. 3] that $e_{n}(H)$ is $\frac{7 q^{2}-q-3}{3}$ or $\frac{7 q^{2}-q-5}{3}$ according as $q \equiv 1$ or 2 modulo 3 . I'll present conjectured formulas of similar type for $e_{n}\left(H^{j}\right)$, with j arbitrary, that are strongly supported by computer calculation. I show that if these hold then the Hilbert-Kunz multiplicity of $u v+H(x, y, z)$ is $\frac{4}{3}+\frac{5}{14 \sqrt{7}}$.

Explicitly, I define numbers u_{j} and v_{j} and conjecture that, if $q \geq j$, then $e_{n}\left(H^{j}\right)=\frac{j q(7 q-j)}{3}+u_{j}$ or $\frac{j q(7 q-j)}{3}+v_{j}$ according as $q \equiv 1$ or 2 modulo 3. The definition of u_{j} and v_{j} is complicated and may appear to be unmotivated. In fact, it is related to ideas from [2], and the reader will find a somewhat less mysterious form of our conjecture, connected to these ideas, in Section 3 of this paper.

To define u_{j} and v_{j}, I introduce some notation.
Definition 1.1. $\quad \Gamma$ is the free abelian group on symbols [0], [1], [2], \ldots and E. σ_{0} and σ_{1} are the endomorphisms of Γ that satisfy the following statements.
(1) $\sigma_{0}([i])=[i+1]$ for even i and $[i-1]+E$ for odd $i ; \sigma_{0}(E)=2 E$.
(2) $\sigma_{1}([i])=[i-1]+E$ for even $i \neq 0$ and $[i+1]$ for odd $i ; \sigma_{1}([0])=[0]$ and $\sigma_{1}(E)=2 E$.

Definition 1.2. If $0 \leq j<q$ then we define an element $f(q, j)$ of Γ inductively as follows:

$$
f(1,0)=[0], \quad f(2 q, 2 k)=\sigma_{0} f(q, k), \quad f(2 q, 2 k+1)=\sigma_{1} f(q, k)
$$

Received July 6, 2007. Revision received December 1, 2007.

