Rationality of Hilbert–Kunz Multiplicities: A Likely Counterexample

PAUL MONSKY

1. A Conjecture

At a 2004 Banff workshop, I gave a talk to demonstrate that, in many cases of interest, the Hilbert–Kunz multiplicity of a hypersurface is a rational number. (Mel Hochster, in the audience, told me a curious general fact: the set of possible Hilbert–Kunz multiplicities is countable.)

At the time I suspected that Hilbert–Kunz multiplicities must be rational. But soon after the workshop I found reason to change my opinion, and in this paper I suggest that a certain hypersurface defined by a 5-variable polynomial has $\frac{4}{3} + \frac{5}{14\sqrt{7}}$ as its Hilbert–Kunz multiplicity.

Throughout, q will denote a power 2^n of 2 with $n \ge 0$, and H will be the element $x^3 + y^3 + xyz$ of $\mathbb{Z}/2[x,y,z]$; $e_n(H^j)$ is the colength, $\deg(x^q,y^q,z^q,H^j)$, of the ideal (x^q,y^q,z^q,H^j) . It is known [1, Thm. 3] that $e_n(H)$ is $\frac{7q^2-q-3}{3}$ or $\frac{7q^2-q-5}{3}$ according as $q \equiv 1$ or 2 modulo 3. I'll present conjectured formulas of similar type for $e_n(H^j)$, with j arbitrary, that are strongly supported by computer calculation. I show that if these hold then the Hilbert–Kunz multiplicity of uv + H(x,y,z) is $\frac{4}{3} + \frac{5}{14\sqrt{7}}$.

Explicitly, I define numbers u_j and v_j and conjecture that, if $q \ge j$, then $e_n(H^j) = \frac{jq(7q-j)}{3} + u_j$ or $\frac{jq(7q-j)}{3} + v_j$ according as q = 1 or 2 modulo 3. The definition of u_j and v_j is complicated and may appear to be unmotivated. In fact, it is related to ideas from [2], and the reader will find a somewhat less mysterious form of our conjecture, connected to these ideas, in Section 3 of this paper.

To define u_i and v_i , I introduce some notation.

DEFINITION 1.1. Γ is the free abelian group on symbols $[0], [1], [2], \ldots$ and E. σ_0 and σ_1 are the endomorphisms of Γ that satisfy the following statements.

- (1) $\sigma_0([i]) = [i+1]$ for even i and [i-1] + E for odd i; $\sigma_0(E) = 2E$.
- (2) $\sigma_1([i]) = [i-1] + E$ for even $i \neq 0$ and [i+1] for odd i; $\sigma_1([0]) = [0]$ and $\sigma_1(E) = 2E$.

DEFINITION 1.2. If $0 \le j < q$ then we define an element f(q,j) of Γ inductively as follows:

$$f(1,0) = [0], \quad f(2q,2k) = \sigma_0 f(q,k), \quad f(2q,2k+1) = \sigma_1 f(q,k).$$

Received July 6, 2007. Revision received December 1, 2007.