A Property of the Absolute Integral Closure of an Excellent Local Domain in Mixed Characteristic

Gennady Lyubeznik

Dedicated to Professor Melvin Hochster on the occasion of his sixty-fifth birthday

1. Introduction

Let (R, \mathfrak{m}) be a Noetherian local excellent domain and let R^+ be the absolute integral closure of R—that is, the integral closure of R in the algebraic closure of the fraction field of R. The ring R^+ when R is 3-dimensional and of mixed characteristic played an important role in Heitmann's proof of the direct summand conjecture in dimension 3 [3]. In dimension > 3 the direct summand conjecture is still open. This motivates the study of R^+ in mixed characteristic and in dimension > 3.

Hochster and Huneke [4] proved that if *R* contains a field of characteristic 0 then R^+ is a big Cohen–Macaulay *R*-algebra; in other words, $H^i_{\mathfrak{m}}(R^+) = 0$ for all $i < \dim R$, and every system of parameters of *R* is a regular sequence on R^+ . Recently, in joint work with Huneke [5], we gave a simpler proof of this result.

This paper is motivated by Huneke's suggestion that perhaps the techniques of our paper [5] could be applied to R^+ in mixed characteristic. Our main result is the following theorem.

THEOREM 1.1. Let (R, \mathfrak{m}) be a Noetherian local excellent domain of mixed characteristic, residual characteristic p > 0, and dimension ≥ 3 . Let \sqrt{pR} (resp. $\sqrt{pR^+}$) be the radical of the principal ideal of R (resp. R^+) generated by p. Set $\overline{R} = R/\sqrt{pR}$ (resp. $\overline{R^+} = R^+/\sqrt{pR^+}$). Then

- (i) $H^1_{\mathfrak{m}}(\overline{R^+}) = 0$, and
- (ii) every part of a system of parameters $\{a, b\}$ of \overline{R} of length 2 is a regular sequence on $\overline{R^+}$.

This theorem suggests the following.

QUESTION. Let (R, \mathfrak{m}) be a Noetherian local excellent domain of mixed characteristic. Is $\overline{R^+}$ then a big Cohen–Macaulay \overline{R} -algebra? That is:

- (i) is $H^i_{\mathfrak{m}}(\overline{R^+}) = 0$ for all $i < \dim \overline{R}$; and
- (ii) is every system of parameters of \overline{R} a regular sequence on $\overline{R^+}$?

Received July 5, 2007. Revision received September 6, 2007.